Skip to main content
Log in

Source Edge Detection of Potential Field Data Using Wavelet Decomposition

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Edge detection of the sources of potential field anomaly is an important step in the interpretation of subsurface source geometries. The conventional methods based on calculation of horizontal or vertical derivatives identify the edges or center of sources by minima, maxima, or zero values in the transformed data. We present a wavelet source edge detector method (WSED) using wavelet multiresolution analysis to identify potential field sources boundaries. The two-dimensional wavelet decomposition is an effective method to understand the frequency components of the signal in different directions. We use a 2D-discrete wavelet transform using Haar wavelets in resolving lateral edges for source edge detection. We test the method on synthetic magnetic anomalies due to sources of complex geometries generated using prismatic sources. We investigated the robustness of the method on the magnetic data of the Bishop model and found the results useful in resolving the edges. We applied the method to gravity data of the north Delhi fold belt, India, to identify boundaries of different geological formations. Our results indicate distinct properties of the source edges in the wavelet domain, which is for the first time reported for the interpretation of the potential field anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

source parameters), b total magnetic anomaly due to model M1

Fig. 5
Fig. 6
Fig. 7
Fig. 8

source edges for the Model M2. a THDR, b TDR, c TDHR, d ASA, e ASB, f TAHG, g THVH, h THETA

Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Data are restricted as per government policy.

Code Availability

Custom codes developed (algorithm provided in the manuscript).

References

  • Arısoy, M. O., & Dikmen, U. (2015). Edge enhancement of magnetic data using fractional-order-derivative filters. Geophysics, 80(1), J7–J17.

    Article  Google Scholar 

  • Blakely, R. J., & Simpson, R. W. (1986). Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics, 51, 1494–1498.

    Article  Google Scholar 

  • Butler, P. G., Jr., Wanamaker, A. D., Scourse, J. D., Richardson, C. A., & Reynolds, D. J. (2013). Variability of marine climate on the North Icelandic Shelf in a 1357-year proxy archive based on growth increments in the bivalve Arctica islandica. Paleogeography, Palaeoclimatology, Palaeoecology., 373, 141–151.

    Article  Google Scholar 

  • Chamoli, A., Bansal, A. R., & Dimri, V. P. (2007). Wavelet and rescaled range approach for the Hurst coefficient for short and long time series. Computer and Geosciences., 33, 83–93.

    Article  Google Scholar 

  • Chamoli, A., Swaroopa Rani, V., Srivastava, K., Srinagesh, D., & Dimri, V. P. (2010). Wavelet analysis of the seismograms for Tsunami warning. Nonlinear Processes in Geophysics., 17, 569–574.

    Article  Google Scholar 

  • Cooper, G. R. J. (2009). Balancing images of potential-field data. Geophysics, 74(3), L17–L20.

    Article  Google Scholar 

  • Cooper, G. R. J., & Cowan, D. R. (2006). Enhancing potential field data using filters based on the local phase. Computers and Geosciences., 32, 1585–1591.

    Article  Google Scholar 

  • Cordell, L., & Grauch, V.J.S.: Mapping basement magnetization zones from aeromagnetic data in the San Juan basin, New Mexico. In: The Utility of Regional Gravity and Magnetic Anomaly Maps (ed. W.J. Hinze), pp.181–197. Society of Exploration Geophysicists (1985)

  • Cornish, C. R., Bretherton, C. R., & Percival, D. B. (2006). Maximal overlap wavelet statistical analysis with application to atmospheric turbulence. Boundary-Layer Meteorology., 119, 339–374.

    Article  Google Scholar 

  • Dwivedi, D., Chamoli, A., & Pandey, A. K. (2019). Crustal structure and lateral variations in Moho beneath the North Delhifold belt, NW India: Insight from gravity data modeling and inversion. Physics of the Earth and Planetary Interiors., 297, 106317.

    Article  Google Scholar 

  • Evjen, H. M. (1936). The place of the vertical gradient in gravitational interpretations. Geophysics, 1, 127–136.

    Article  Google Scholar 

  • Fairhead, J. D., Salem, A., Cascone, L., Hammill, M., Masterton, S., & Samson, E. (2011). New developments of the magnetic tilt-depth method to improve structural mapping of sedimentary basins. Geophysical Prospecting, 59, 1072–1086.

    Article  Google Scholar 

  • Farge, M. (1992). Wavelet transforms and their applications to turbulence. Annual Review of Fluid Mechanics, 24, 395–457.

    Article  Google Scholar 

  • Ferreira, F. J., de Souza, J., de Bongiolo, B. E. S. A., & de Castro, L. G. (2013). Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle. Geophysics, 78(3), J33–J41.

    Article  Google Scholar 

  • Gerovska, D., Araúzo-Bravo, M., Whaler, K., Stavrev, P., & Reid, A. (2010). Three-dimensional interpretation of magnetic and gravity anomalies using the finite-difference similarity transform. Geophysics, 75(4), L79–L90.

    Article  Google Scholar 

  • Hidalgo-Gato, M. C., & Barbosa, V. C. F. (2015). Edge detection of potential-field sources using scale-space monogenic signal: Fundamental principles. Geophysics, 80(5), J27–J36.

    Article  Google Scholar 

  • Hsu, S., Sibuet, J. C., & Shyu, C. (1996). High-resolution detection of geologic boundaries from potential field anomalies: An enhanced analytic signal technique. Geophysics, 61(2), 373–386.

    Article  Google Scholar 

  • Leblanc, G. E., & Morris, W. A. (2001). Denoising of aeromagnetic data via the wavelet transform. Geophysics, 66(6), 1793–1804.

    Article  Google Scholar 

  • Li, X. (2016). Terracing gravity and magnetic data using edge-preserving smoothing filters. Geophysics, 81(2), G41–G47.

    Article  Google Scholar 

  • Malamud, B. D., & Turcotte, D. L. (2001). Wavelet analyses of Mars polar topography. Journal of Geophysical Research, 106, 17497–17504.

    Article  Google Scholar 

  • Mallat, S. G. (1989). A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 674–693.

    Article  Google Scholar 

  • Mallat, S. G., & Zhong, S. (1992). Characterization of signals from multiscale edges. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(7), 710–732.

    Article  Google Scholar 

  • Mandal, A., Mohanty, W. K., Sharma, S. P., Biswas, A., Sen, J., & Bhatt, A. K. (2015). Geophysical signatures of uranium mineralization and its subsurface validation at Beldih, Purulia District, West Bengal, India: A case study. Geophysical Prospecting, 63(3), 713–726.

    Article  Google Scholar 

  • Miller, H. G., & Singh, V. (1994). Potential field tilt—a new concept for location of potential field sources. Journal of Applied Geophysics, 32, 213–217.

    Article  Google Scholar 

  • Nabighian, M. N. (1972). The analytical signal of a two-dimensional magnetic bodies with polygonal cross-section: Its properties and use for automated anomaly interpretation. Geophysics, 37(3), 507–517.

    Article  Google Scholar 

  • Nabighian, M. N. (1984). Toward a three-dimensional automatic interpretation of potential field data via generalized Hilbert transforms: Fundamental relations. Geophysics, 49(6), 780–786.

    Article  Google Scholar 

  • Percival, D., & Walden, A. (2000). Wavelet methods for time series analysis (Cambridge series in statistical and probabilistic mathematics). Cambridge: Cambridge University Press.

    Google Scholar 

  • Pesquet, J. C., Krim, H., & Carfantan, H. (1996). Time invariant orthonormal wavelet representations. IEEE Transactions on Signal Processing, 44(8), 1964–1970.

    Article  Google Scholar 

  • Roest, W. R., Verhoef, J., & Pilkington, M. (1992). Magnetic interpretation using the 3-D analytic signal. Geophysics, 57(1), 116–125.

    Article  Google Scholar 

  • Salem, A., Masterton, S., Campbell, S., Fairhead, J. D., Dickinson, J., & Murphy, C. (2013). Interpretation of tensor gravity data using an adaptive tilt angle method. Geophysical Prospecting., 61, 1065–1076.

    Article  Google Scholar 

  • Salem, A., Williams, S., Fairhead, D., Smith, R., & Ravat, D. (2008). Interpretation of magnetic data using tilt-angle derivatives. Geophysics, 73(1), L1–L10.

    Article  Google Scholar 

  • Santos, D. F., Silva, J. B. C., Barbosa, V. C. F., & Braga, L. F. S. (2012). Deep-pass -An aeromagnetic data filter to enhance deep features in marginal basins. Geophysics, 77(3), J15–J22.

    Article  Google Scholar 

  • Sinha-Roy, S. (1984). Precambrian crustal interactions in Rajasthan, NW India. Indian Journal of Earth Sciences CEISM, 20, 84–91.

    Google Scholar 

  • Sinha-Roy, S. (1988). Proterozoic Wilson cycle in Rajasthan. Memoir Geological Society of India, 7, 95–108.

    Google Scholar 

  • Sun, Y., Yang, W., Zeng, X., & Zhang, Z. (2016). Edge enhancement of potential field data using spectral moments. Geophysics, 81(1), G1–G11.

    Article  Google Scholar 

  • Telesca, L., Lovallo, M., Chamoli, A., Dimri, V. P., & Srivastava, K. (2013). Fisher–Shannon analysis of seismograms of tsunamigenic and non-tsunamigenic earthquakes. Physica A Statistical Mechanics and its Applications, 392(16), 3424–3429.

    Article  Google Scholar 

  • Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79, 61–78.

    Article  Google Scholar 

  • Verduzco, B., Fairhead, J. D., Green, C. M., & Mackenzie, C. (2004). New insights into magnetic derivatives for structural mapping. The Leading Edge, 23, 116–119.

    Article  Google Scholar 

  • Walnut, D. F. (2002). An introduction to wavelet analysis. New York: Springer.

    Google Scholar 

  • Wijns, C., Perez, C., & Kowalczyk, P. (2005). Theta map: Edge detection in magnetic data. Geophysics, 70(4), L39–L43.

    Article  Google Scholar 

  • Williams, S., Fairhead, J. D., & Flanagan, G.: Realistic models of basement topography for depth to magnetic basement testing. In 72nd SEG annual meeting, Salt Lake City, Utah, Expanded Abstracts. pp 814–817 (2002)

  • Yao, Y., Huang, D., Yu, X., & Chai, B. (2016). Edge interpretation of potential field data with the normalized enhanced analytic signal. Acta Geodetica et Geophysica, 51, 125–136.

    Article  Google Scholar 

  • Zhang, X., Yu, P., Tang, R., Xiang, Y., & Zhao, C. (2014). Edge enhancement of potential field data using an enhanced tilt angle. Exploration Geophysics, 46, 276–283.

    Article  Google Scholar 

Download references

Acknowledgements

DD acknowledges the financial grant of the Ministry of Human Resource Development (MHRD), India. The efforts of AC were supported by the DST FIST grant [SR/FST/ES11-018] and Science and Engineering Research Board (SERB), India project grant [File no. EMR/2016/002910]. We appreciate the comments of two anonymous reviewers that significantly improved this manuscript.

Funding

Ministry of Human Resource Development (MHRD), India (for DD), DST FIST [SR/FST/ES11-018] and Science and Engineering Research Board (SERB), India project-EMR/2016/002910.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Chamoli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Multiresolution Analysis Using DWT

Appendix 1: Multiresolution Analysis Using DWT

The DWT uses multiresolution analysis to represent a signal in terms of its spatial frequency components (Mallat 1989). It represents a signal using approximation \(({\mathbf{V}}_{j} )\) and detail \(({\mathbf{W}}_{j} )\) spaces with different levels of resolution.

A sequence \(\{ V_{j} \}_{{j \in {\mathbf{z}}}}\) of the closed subspaces of Hilbert space \({\mathbf{L}}^{2} ({\mathbf{R}})\) is a multiresolution approximation if the following properties exist (Mallat 1989):

  1. 1.

    \(\forall (j,n)\, \in {\mathbf{Z}}^{2} \;\,f(t) \in \,V_{j} \; \leftrightarrow \;f(t - 2^{j} n)\, \in \;V_{j}\)

  2. 2.

    \(\forall j\, \in \,{\mathbf{Z}}\;\;f(t)\; \in \,V_{j} \; \leftrightarrow \,f(t/2)\; \in \,V_{j + 1}\)

  3. 3.

    \(\forall j\, \in \,{\mathbf{Z}}\;\;V_{j + 1} \, \in \,V_{j}\)

  4. 4.

    \(\lim_{j \to + \infty } \;V_{j} = \cap_{j \in z} V_{j} = \{ 0\}\)

  5. 5.

    \(\lim_{j \to - \infty } \;V_{j} = \cup_{j \in z} V_{j} = {\mathbf{L}}^{2} ({\mathbf{R}})\)

  6. 6.

    There exist \(\phi (t)\, \in \,V_{0}\) such that \(\phi (t - n)_{n \in z}\) is an orthonormal basis of \(\,V_{0}\)

For each integer j, the functions are an orthonormal basis for each \(V_{j}\). The wavelet spaces \(W_{j}\) are introduced from the orthogonal complements of \(V_{j}\) in \(V_{j - 1} \;(V_{j - 1} = V_{j} \oplus \,W_{j} ,\,\forall j \in \;{\mathbf{z}}).\) One can construct wavelet \(\psi\) such that the dilated and translated family is an orthogonal basis of \({\mathbf{L}}^{2} ({\mathbf{R}})\).

In 2D wavelet transform, the scaling and wavelet function are two variable functions, denoted as \(\phi (x,y)\) and \(\psi (x,y)\).

The scaled and wavelet basis functions expressions are given as (Mallat 1989):

$$\phi_{{j_{0} ,p,q}} \left( {x,y} \right) = 2^{j/2} \phi \left( {2^{j} x - p,{\kern 1pt} {\kern 1pt} {\kern 1pt} 2^{j} y - q} \right),$$
(20)
$$\psi_{j,p,q}^{i} \left( {x,y} \right) = 2^{j/2} \psi^{i} \left( {2^{j} x - p,{\kern 1pt} {\kern 1pt} {\kern 1pt} 2^{j} y - q} \right)\;\;\;\;\;i = \{ H,V,D\} ,$$
(21)

where \(\left( {x,y} \right) \in \,{\mathbf{R}}^{2}\) and \(\left( {p,q} \right) \in \,{\mathbf{Z}}^{2}\). There is one scaling function and three wavelet functions for each level. If the wavelet function is separable, then these functions can be rewritten as:

$$\phi (x,y) = \phi (x)\,\,\phi (y),$$
(22)
$$\psi^{H} (x,y) = \psi (x)\,\,\phi (y),$$
(23)
$$\psi^{V} (x,y) = \phi (x)\,\,\psi (y),$$
(24)
$$\psi^{D} (x,y) = \psi (x)\,\,\psi (y).$$
(25)

The wavelet family \(\{ \psi_{j,p,q}^{H} ,\,\,\psi_{j,p,q}^{V} ,\,\,\psi_{j,p,q}^{D} \}_{{p,q\, \in \,{\mathbf{Z}}^{2} }} \,\) is an orthonormal basis of \({\mathbf{W}}_{j}^{2}\) and \(\{ \psi_{j,p,q}^{H} ,\,\,\psi_{j,p,q}^{V} ,\,\,\psi_{j,p,q}^{D} \}_{{(j,p,q)\, \in \,{\mathbf{Z}}^{3} }} \,\) is an orthonormal basis of \({\mathbf{L}}^{2} ({\mathbf{R}}^{2} )\).

The wavelet approximation coefficients for the function \(f(x,y)\) of size \(M \times L\) can be given as (Mallat 1989):

$$W_{\phi } \left( {j_{0} ,p,q} \right) = \frac{1}{{\sqrt {ML} }}\sum\limits_{x = 0}^{M - 1} {\sum\limits_{y = 0}^{L - 1} {f\left( {x,y} \right)} } {\kern 1pt} {\kern 1pt} \phi_{{j_{0} ,p,q}} \left( {x,y} \right),$$
(26)

where \(j_{0}\) is the scale of the coefficients.

The horizontal (\(W_{\psi }^{H}\)), vertical (\(W_{\psi }^{V}\)) and diagonal (\(W_{\psi }^{D}\)) wavelet detail coefficients can be written as (Mallat 1989):

$$W_{\psi }^{H} \left( {j,p,q} \right) = \frac{1}{{\sqrt {ML} }}\sum\limits_{x = 0}^{M - 1} {\sum\limits_{y = 0}^{L - 1} {f\left( {x,y} \right)} } {\kern 1pt} {\kern 1pt} \psi_{j,p,q}^{H} \left( {x,y} \right)\quad j \ge j_{0} ,$$
(27)
$$W_{\psi }^{V} \left( {j,p,q} \right) = \frac{1}{{\sqrt {ML} }}\sum\limits_{x = 0}^{M - 1} {\sum\limits_{y = 0}^{L - 1} {f\left( {x,y} \right)} } {\kern 1pt} {\kern 1pt} \psi_{j,p,q}^{V} \left( {x,y} \right)\quad j \ge j_{0} ,$$
(28)
$$W_{\psi }^{D} \left( {j,p,q} \right) = \frac{1}{{\sqrt {ML} }}\sum\limits_{x = 0}^{M - 1} {\sum\limits_{y = 0}^{L - 1} {f\left( {x,y} \right)} } {\kern 1pt} {\kern 1pt} \psi_{j,p,q}^{D} \left( {x,y} \right)\quad j \ge j_{0} .$$
(29)

This is the general form of the 2D discrete wavelet transform.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, D., Chamoli, A. Source Edge Detection of Potential Field Data Using Wavelet Decomposition. Pure Appl. Geophys. 178, 919–938 (2021). https://doi.org/10.1007/s00024-021-02675-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02675-5

Keywords

Navigation