Skip to main content
Log in

Evolutionary Aspects of Genomic Imprinting

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—

Genomic imprinting is an epigenetic phenomenon that differentiates maternal and paternal copies of genes in the genome and causes monoallelic expression depending on parental origin. Imprinting is an evolutionary puzzle, as it bears the costs of diploidization without its advantages, namely, protection from recessive mutations. The aim of this review is to answer the question of why genomic imprinting arose and became fixed in the evolution of angiosperms, insects, marsupials, and placental mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Crouse H.V. 1960. The controlling element in sex chromosome behavior in Sciara. Genetics. 45 (10), 1429–1443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Singh P.B., Belyakin S.N. 2018. L chromosome behaviour and chromosomal imprinting in Sciara coprophila. Genes (Basel). 9 (9), E440.

    Article  PubMed  Google Scholar 

  3. Rodrigues J.A., Zilberman D. 2015. Evolution and function of genomic imprinting in plants. Genes. 29 (24), 2517–2531.

    Article  CAS  Google Scholar 

  4. Renfree M.B., Hore T.A., Shaw G. 2009. Evolution of genomic imprinting: Insights from marsupials and monotremes. Annu. Rev. Genomics Hum. Genet. 10, 241–262.

    Article  CAS  PubMed  Google Scholar 

  5. Woo H.R., Dittmer T.A., Richards E.J. 2008. Three SRA-domain methylcytosine-binding proteins cooperate to maintain global CpG methylation and epigenetic silencing in Arabidopsis. PLoS Genet. 4 (8), e1000156.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lindroth A.M., Cao X., Jackson J.P. 2001. Requirement of chromomethylase 3 for maintenance of CpXpG methylation. Science. 292 (5524), 2077–2080.

    Article  CAS  PubMed  Google Scholar 

  7. Cao X., Jacobsen S.E. 2002. Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr. Biol. 12 (13), 1138–1144.

    Article  CAS  PubMed  Google Scholar 

  8. Han Q., Bartels A., Cheng X., Meyer A., An Y.C., Hsieh T.F., Xiao W. 2019. Epigenetics regulates reproductive development in plants. Plants (Basel). 8 (12), e564.

    Article  PubMed  Google Scholar 

  9. Cokus S.J., Feng S., Zhang X. 2008. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature. 452 (7184), 215–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gerashchenkov G.A., Yasybaeva G.R., Rozhnova N.A., Chemeris A.V. 2016. Mechanisms of genomic imprinting in flowering plants. Izv. Ufimsk. Nauch. Trentra Ross. Akad. Nauk. 3, 42–52.

    Google Scholar 

  11. Ibarra C.A., Feng X., Schoft V.K., Hsieh T.F., Uzawa R., Rodrigues J.A., Zemach A., Chumak N., Machlicova A., Nishimura T., Rojas D., Fischer R.L., Tamaru H., Zilberman D. 2012. Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science. 337 (6100), 1360–1364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jullien P., Susaki D., Yelagandula R. 2012. DNA methylation dynamics during sexual reproduction in Arabidopsis thaliana. Curr. Biol. 22 (19), 1825–1830.

    Article  CAS  PubMed  Google Scholar 

  13. Kohler C., Wolff P., Spillane C. 2012. Epigenetic mechanisms underlying genomic imprinting in plants. Annu. Rev. Plant Biol. 63, 331–352.

    Article  PubMed  Google Scholar 

  14. Batista R.A., Moreno-Romero J., Qiu Y., van Boven J., Santos-González J., Figueiredo D.D., Köhler C. 2019. The MADS-box transcription factor PHERES1 controls imprinting in the endosperm by binding to domesticated transposons. eLife. 2 (8), e50541.

    Article  Google Scholar 

  15. Schmidt A., Wöhrmann H.J., Raissig M.T., Arand J., Gheyselinck J., Gagliardini V., Heichinger C., Walter J., Grossniklaus U. 2013. The Polycomb group protein MEDEA and the DNA methyltransferase MET1 interact to repress autonomous endosperm development in Arabidopsis. Plant J. 73 (5), 776–787.

    Article  CAS  PubMed  Google Scholar 

  16. Wolf J.B., Brandvain Y. 2014. Gene interactions in the evolution of genomic imprinting. Heredity (Edinb.). 12 (10), e1038.

    Google Scholar 

  17. Morison I.M., Paton C.J., Cleverley S.D. 2001. The imprinted gene and parent-of-origin effect database. Nucleic Acids Res. 29, 275–276. http://otago.ac.nz/IGC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gehring M., Satyaki P.R. 2017. Endosperm and imprinting, inextricably linked. Plant Physiol. 173 (1), 143–154.

    Article  CAS  PubMed  Google Scholar 

  19. Tikhonov A.V., Efimova O.A., Pendina A.A., Baranov V.S. 2017. Epigenetic DNA reprogramming in human gametes and preimplantation embryos. Med. Genet. 16 (5), 17–25.

    Google Scholar 

  20. Thamban T., Agarwaal V., Khosla S. 2020. Role of genomic imprinting in mammalian development. J. Biosci. 45, e20.

  21. Sazhenova E.A., Lebedev I.N. 2019. Epigenetic mosaicism in genomic imprinting disorders. Russ. J. Genet. 55 (10), 1196–1207.

    Article  CAS  Google Scholar 

  22. Baran Y., Subramaniam M., Biton A. 2015. The landscape of genomic imprinting across diverse adult human tissues. Genome Res. 25 (7), 927–936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nishiwaki K., Niikawa N., Ishikawa M. 1997. Polymorphic and tissue-specific imprinting of the human Wilms tumor gene WT1. Jpn. J. Hum. Genet. 42 (1), 205–211.

    Article  CAS  PubMed  Google Scholar 

  24. Kermicle J.L. 1970. Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission. Genetics. 66, 69–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tuteja R.1., McKeown P.C., Ryan P., Morgan C.C., Donoghue M.T., Downing T., O’Connell M.J., Spillane C. 2019. Paternally expressed imprinted genes under positive Darwinian selection in Arabidopsis thaliana. Mol. Biol. Evol. 36 (6), 1239–1253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ferguson-Smith A.C., Bourc’his D. 2018. The discovery and importance of genomic imprinting.eLife. 7, e42368.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gehring M. 2019. Epigenetic dynamics during flowering plant reproduction: Evidence for reprogramming? New Phytol. 224 (1), 91–96.

    Article  PubMed  PubMed Central  Google Scholar 

  28. O’Neal E., Willis J.H., Franks R.G. 2016. Disruption of endosperm development is a major cause of hybrid seed inviability between Mimulus guttatus and Mimulus nudatus. New Phytol. 210 (3), 1107–1120.

    Article  Google Scholar 

  29. Kradolfer D., Wolff P., Jiang H., Siretskiy A., Kohler C. 2013. An imprinted gene underlies postzygotic reproductive isolation in Arabidopsis thaliana. Dev. Cell. 26, 525–535.

    Article  CAS  PubMed  Google Scholar 

  30. Klosinska M., Picard C.L., Gehring M. 2016. Conserved imprinting associated with unique epigenetic signatures in the Arabidopsis genus. Nat. Plants. 2, e16145.

    Article  Google Scholar 

  31. Filia A.G., Fenn-Moltu G., Ross L. 2019. No evidence for an intragenomic arms race under paternal genome elimination in Planococcus mealybugs. J. Evol. Biol. 32 (5), 491–504.

    Article  PubMed  Google Scholar 

  32. Das R.I., Hampton D.D., Jirtle R.L. 2009. Imprinting evolution and human health. Mammal. Genome. 20 (9–10), 563–572.

    Article  Google Scholar 

  33. Wolf J.B., Brandvain Y. 2014. Gene interactions in the evolution of genomic imprinting. Heredity (Edinb.). 12 (10), e1038.

    Google Scholar 

  34. Ostrovsky A.N., Lidgard S., Gordon D.P., Schwaha T., Genikhovich G., Ereskovsky A.V. 2016. Matrotrophy and placentation in invertebrates: A new paradigm. Biol. Rev. Camb. Philos. Soc. 91 (3), 673–711.

    Article  PubMed  Google Scholar 

  35. McGrath J., Solter D. 1983. Nuclear transplantation in the mouse embryo by microsurgery and cell fusion. Science. 220, 1300–1303.

    Article  CAS  Google Scholar 

  36. Surani M.A., Barton S.C., Norris M.L. 1984. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature. 308, 548–550.

    Article  CAS  PubMed  Google Scholar 

  37. Grafodatskaya D., Choufani S., Basran R. 2017. An update on molecular diagnostic testing of human imprinting disorders. J. Pediatr. Genet. 6 (1), 3–17.

    Article  PubMed  Google Scholar 

  38. Cassidy F.C., Charalambous M. 2018. Genomic imprinting, growth and maternal–fetal interactions. J. Exp. Biol. 221, jeb164517.

    Article  PubMed  Google Scholar 

  39. Hemida R., van Doorn H., Fisher R. 2016. A novel genetic mutation in a patient with recurrent biparental complete hydatidiform mole: A brief report. Int. J. Gynecol. Cancer. 26 (7), 1351–1353.

    Article  PubMed  Google Scholar 

  40. Sazhenova E.A., Lebedev I.N. 2008. Epimutations of the KCNQ1OT1 imprinting center of chromosome 11 in early human embryolethality. Russ. J. Genet. 44 (12), 1394–1399.

    Article  CAS  Google Scholar 

  41. Sazhenova E.A., Lebedev I.N. 2010. Epimutations of the PLAGL1 imprinted genes in recurrent pregnancy loss. Med. Genet. 9 (11), 34–39.

    CAS  Google Scholar 

  42. Diplas A.I., Lambertini L., Lee M.J. 2009. Differential expression of imprinted genes in normal and IUGR human placentas. Epigenetics. 4 (4), 235–240.

    Article  CAS  PubMed  Google Scholar 

  43. Doria S., Sousa M., Fernandes S., Ramalho C., Brandao O., Matias A., Barros A., Carvalho F. 2010. Gene expression pattern of IGF2, PHLDA2, PEG10 and CDKN1C imprinted genes in spontaneous miscarriages or fetal deaths. Epigenetics. 5 (5), 444–450.

    Article  CAS  PubMed  Google Scholar 

  44. Pliushch G., Schneider E., Weise D., El Hajj N., Tresch A., Seidmann L., Coerdt W., Müller A.M., Zechner U., Haaf T. 2010. Extreme methylation values of imprinted genes in human abortions and stillbirths. Am. J. Pathol. 176 (3), 1084–1090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zechner U., Pliushch G., Schneider E., El Hajj N, Tresch A., Shufaro Y., Seidmann L., Coerdt W., Müller A.M., Haaf T. 2010. Quantitative methylation analysis of developmentally important genes in human pregnancy losses after ART and spontaneous conception. Mol. Hum. Reprod. 16 (9), 704–713.

    Article  CAS  PubMed  Google Scholar 

  46. Sazhenova E.A., Nikitina T.V., Skryabin N.A., Minaicheva L.I., Ivanova T.V., Nemtseva T.N., Yur’ev S.Yu., Evtushenko I.D., Lebedev I.N. 2017. Epigenetic status of imprinted genes in placenta during recurrent pregnancy loss. Russ. J. Genet. 53 (3), 364–377

    Article  Google Scholar 

  47. Monk D., Mackay D.J., Eggermann T., Maher E.R., Riccio A. 2019. Genomic imprinting disorders: Lessons on how genome, epigenome and environment interact. Nat. Rev. Genet. 20 (4), 235–248.

    Article  CAS  PubMed  Google Scholar 

  48. Delaval K., Wagschal A., Feil R. 2006. Epigenetic deregulation of imprinting in congenital diseases of aberrant growth. Bioessays. 28 (5), 453–459.

    Article  CAS  PubMed  Google Scholar 

  49. Tucci V., Isles A.R., Kelsey G., Ferguson-Smith A.C. 2019. Genomic imprinting and physiological processes in mammals. Cell. 176 (5), 952–965.

    Article  CAS  PubMed  Google Scholar 

  50. Keverne E.B., Martel F.L., Nevison C.M. 1996. Primate brain evolution: Genetic and functional considerations. Proc. Biol. Sci. 263 (1371), 689–696.

    Article  CAS  PubMed  Google Scholar 

  51. Keverne E.B. 2001. Genomic imprinting and the maternal brain. Prog Brain Res. 133, 279–285.

    Article  CAS  PubMed  Google Scholar 

  52. Chung S.H., Marzban H., Aldinger K., Dixit R., Millen K., Schuurmans C., Hawkes R. 2011. Zac1 plays a key role in the development of specific neuronal subsets in the mouse cerebellum. Neural. Dev. 6, e25.

    Article  Google Scholar 

  53. Peeters R.P., Hernandez A., Ng L., Ma M., Sharlin D.S., Pandey M., Simonds W.F., St Germain D.L., Forrest D. 2013. Cerebellar abnormalities in mice lacking type 3 deiodinase and partial reversal of phenotype by deletion of thyroid hormone receptor α1. Endocrinology. 154 (1), 550–561.

    Article  CAS  PubMed  Google Scholar 

  54. McNamara G.I., Davis B.A., Browne M., Humby T., Dalley J.W., Xia J., John R.M., Isles A.R. 2018. Dopaminergic and behavioural changes in a loss-of-imprinting model of Cdkn1c. Genes Brain Behav. 17 (2), 149–157.

    Article  CAS  PubMed  Google Scholar 

  55. Kuwajima T., Nishimura I., Yoshikawa K. 2006. Necdin promotes GABAergic neuron differentiation in cooperation with Dlx homeodomain proteins. J. Neurosci. 26 (20), 5383–5392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cassidy S.B., Schwartz S., Miller J.L., Driscoll D.J. 2012. Prader–Willi syndrome. Genet. Med. 14 (1), 10–26.

    Article  CAS  PubMed  Google Scholar 

  57. Soellner L., Begemann M., Mackay D.J., Grønskov K., Tumer Z., Maher E.R., Temple I.K., Monk D., Riccio A., Linglart A., Netchine I., Eggermann T. 2017. Recent advances in imprinting disorders. Clin. Genet. 91, 3–13.

    Article  CAS  PubMed  Google Scholar 

  58. Perez J.D, Rubinstein N.D., Dulac C. 2016. New perspectives on genomic imprinting, an essential and multifaceted mode of epigenetic control in the developing and adult brain. Annu. Rev. Neurosci. 39, 347–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schulz R., McCole R.B., Woodfine K., Wood A.J., Chahal M., Monk D., Moore G.E., Oakey R.J. 2009. Transcript- and tissue-specific imprinting of a tumour suppressor gene. Hum. Mol. Genet. 18 (1), 118–127.

    Article  CAS  PubMed  Google Scholar 

  60. Thamban T., Sowpati D.T., Pai V., Nithianandam V., Abe T., Shioi G., Mishra R.K., Khosla S. 2019. The putative neuronatin imprint control region is an enhancer that also regulates the Blcap gene. Epigenomics. 11 (3), 251–266.

    Article  CAS  PubMed  Google Scholar 

  61. Zhou Y., Zhang X., Klibanski A. 2012. MEG3 noncoding RNA: A tumor suppressor. J. Mol. Endocrinol. 48 (3), R45–R53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lopez S.J., Segal D.J., La Salle J.M. 2019. UBE3A: An E3 ubiquitin ligase with genome-wide impact in neurodevelopmental disease. Front. Mol. Neurosci. 11, e476.

    Article  Google Scholar 

  63. Mishra A., Jana N.R. 2008. Regulation of turnover of tumor suppressor p53 and cell growth by E6-AP, a ubiquitin protein ligase mutated in Angelman mental retardation syndrome. Cell Mol. Life Sci. 65 (4), 656–666.

    Article  CAS  PubMed  Google Scholar 

  64. Chiavegatto S., Sauce B., Ambar G., Cheverud J.M., Peripato A.C. 2012. Hypothalamic expression of Peg3 gene is associated with maternal care differences between SM/J and LG/J mouse strains. Brain Behav. 2 (4), 365–376.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ineson J., Stayner C., Hazlett J., Slobbe L. 2012. Somatic reactivation of expression of the silent maternal Mest allele and acquisition of normal reproductive behavior in a colony of Peg1/Mest mutant mice. J. Reprod. 58 (4), 490–500.

    Article  CAS  Google Scholar 

  66. Keverne E.B. 2011. Epigenetics and brain evolution. Epigenomics. 3 (2), 183–191.

    Article  CAS  PubMed  Google Scholar 

  67. Tunster S.J., Creeth H.D., John R.M. 2016. The imprinted Phlda2 gene modulates a major endocrine compartment of the placenta to regulate placental demands for maternal resources. Dev. Biol. 409 (1), 251–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Creeth H.D., McNamara G.I., Tunster S.J., Boque-Sastre R., Allen B., Sumption L., Eddy J.B., Isles A.R., John R.M. 2018. Maternal care boosted by paternal imprinting in mammals. PLoS Biol. 16 (7), e2006599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Monk D., Arnaud P., Frost J., Hills F.A., Stanier P., Feil R., Moore G.E. 2009. Reciprocal imprinting of human GRB10 in placental trophoblast and brain: Evolutionary conservation of reversed allelic expression. Hum. Mol. Genet. 15 (18), 3066–3074.

    Article  Google Scholar 

  70. Garfield A.S., Cowley M., Smith F.M., Moorwood K., Stewart-Cox J.E., Gilroy K., Baker S., Xia J., Dalley J.W., Hurst L.D., Wilkinson L.S., Isles A.R., Ward A. 2011. Distinct physiological and behavioural functions for parental alleles of imprinted Grb10. Nature. 469 (7331), 534–538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rienecker K.D., Chavasse A.T., Moorwood K., Ward A., Isles A.R. 2020. Detailed analysis of paternal knockout Grb10 mice suggests effects on stability of social behavior, rather than social dominance. Genes Brain Behav. 19 (1), e12571.

    Article  CAS  PubMed  Google Scholar 

  72. Portmann-Lanz C.B., Schoeberlein A., Portmann R., Mohr S., Rollini P., Sager R., Surbek D.V. 2010. Turning placenta into brain: Placental mesenchymal stem cells differentiate into neurons and oligodendrocytes. Am. J. Obstet. Gynecol. 202 (3), 294.e1–294.e11.

    Article  Google Scholar 

  73. Keverne E.B. 2014. Significance of epigenetics for understanding brain development, brain evolution and behavior. Neuroscience. 4 (264), 207–217.

    Article  Google Scholar 

  74. Chen X.Y., Xue Y., Wang H., Zhu S.H., Hao X.M., Chen L. 2013. Modulation of firing activity by endogenous GABAA receptors in the globus pallidus of MPTP-treated parkinsonian mice. Neurosci. Bull. 29 (6), 701–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kono T. 2006. Genomic imprinting is a barrier to parthenogenesis in mammals. Cytogenet. Genome Res. 113, 31–35.

    Article  CAS  PubMed  Google Scholar 

  76. Weisstein A.E., Feldman M.W., Spencer H.G. 2002. Evolutionary genetic models of the ovarian time bomb hypothesis for the evolution of genomic imprinting. Genetics. 162, 425–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Varmuza S., Mann M. 1994. Genomic imprinting: Defusing the ovarian time bomb. Trends. Genet. 10 (4), 118–123.

    Article  CAS  PubMed  Google Scholar 

  78. Barlow D.P. 1993. Methylation and imprinting: from host defense to gene regulation. Science. 260, 309–310.

    Article  CAS  PubMed  Google Scholar 

  79. Roberts R.M., Green J.A., Schulz L.C. 2016. The evolution of the placenta. Reproduction. 152, R179–R189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ono R.I., Nakamura K., Inoue K., Naruse M., Usami T., Wakisaka-Saito N., Hino T., Suzuki-Migishima R., Ogonuki N., Miki H., Kohda T., Ogura A., Yokoyama M., Kaneko-Ishino T., Ishino F. 2006. Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nat. Genet. 38 (1), 101–106.

    Article  CAS  PubMed  Google Scholar 

  81. Henke C., Strissel P.L., Schubert M.T., Mitchell M., Stolt C.C., Faschingbauer F., Beckmann M.W., Strick R. 2015. Selective expression of sense and antisense transcripts of the Sushi-ichi-related retrotransposon-derived family during mouse placentogenesis. Retrovirology. 12, e9.

    Article  Google Scholar 

  82. Kitazawa M., Tamura M., Kaneko-Ishino T., Ishino F. 2017. Severe damage to the placental fetal capillary network causes mid- to late fetal lethality and reduction in placental size in Peg11/Rtl1 KO mice. Genes Cells. 22 (2), 174–188.

    Article  CAS  PubMed  Google Scholar 

  83. Haig D., Graham C. 1991. Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell. 64, 1045–1046.

    Article  CAS  PubMed  Google Scholar 

  84. Haig D. 2004. Evolutionary conflicts in pregnancy and calcium metabolism: A review. Placenta. 25, 10–15.

    Article  Google Scholar 

  85. Xiong Y., Mei W., Kim E.D., Mukherjee K., Hassanein H., Barbazuk W.B., Sung S., Kolaczkowski B., Kang B.H. 2014. Adaptive expansion of the maize maternally expressed gene (Meg) family involves changes in expression patterns and protein secondary structures of its members. BMC Plant Biol. 14, e204.

    Article  Google Scholar 

  86. Lan Y., Liu X., Fu Y., Huang S. 2018. Arabidopsis class I formins control membrane-originated actin polymerization at pollen tube tips. PLoS Genet. 14 (11), e1007789.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project 19-14-50333).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Sazhenova.

Ethics declarations

The authors declare that they have no conflict of interest.

This article does not contain any research with biological material as an object.

Additional information

Translated by A. Kashevarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sazhenova, E.A., Lebedev, I.N. Evolutionary Aspects of Genomic Imprinting. Mol Biol 55, 1–15 (2021). https://doi.org/10.1134/S0026893320060102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893320060102

Keywords:

Navigation