Skip to main content
Log in

Regulation of IL33 Gene Expression by SP1 and Foxa1 in Breast and Lung Cancer Cells

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Interleukin-33 (IL-33) is a member of the IL-1 cytokine family, primarily known as a mediator of the humoral immune response. It provides protection of barrier tissues and participates in the development of a range of diseases. This cytokine promotes carcinogenesis by induction of proliferation and survival of cancer cells, remodeling of the tumor microenvironment, and promoting immunosuppressive conditions. Elevated levels of IL-33 were observed in many types of cancers. This elevation correlates with a poor prognosis, making IL33 a promising target for cancer immunotherapy. The mechanisms of IL-33 expression regulation in human tumor cells are not well understood. Here, we show that that expression of IL-33 in breast and lung cancer cell lines depends, at least in part, on the activity of the SP1 and FOXA1 transcription factors. Increases in the activity of these transcription factors may be responsible for elevated levels of IL-33 and subsequent tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Aggarwal B.B., Vijayalekshmi R. V, Sung B. 2009. Targeting inflammatory pathways for prevention and therapy of cancer: Short-term friend, long-term foe. Clin. Cancer Res. 15 (2), 425–430.

    Article  CAS  Google Scholar 

  2. Leibovici J., Itzhaki O., Huszar M., Sinai J. 2011. The tumor microenvironment: Part 1. Immunotherapy. 3, 1367–1384.

    Article  CAS  Google Scholar 

  3. Kumar J., Surh Y. 2008. Inflammation: Gearing the journey to cancer. Mutat. Res. 659, 15–30.

    Article  Google Scholar 

  4. Liew F.Y., Pitman N.I., McInnes I.B. 2010. Disease-associated functions of IL-33: The new kid in the IL-1 family. Nat. Rev. Immunol. 10, 103–110.

    Article  CAS  Google Scholar 

  5. Gao X., Wang X., Yang Q., Zhao X., Wen, WenJiang J., Wu C., Zhang X. 2014. Tumoral expression of IL-33 inhibits tumor growth and modifies the tumor microenvironment through CD8+ T and NK cells. J. Immunol. 194 (1), 438-445.

    Article  Google Scholar 

  6. Kim J.Y., Lim S., Kim G., Yun H.J., Ahn S., Choi H.S. 2014. Interleukin-33/ST2 axis promotes epithelial cell transformation and breast tumorigenesis via upregulation of COT activity. Oncogene. 34 (38), 4928‒4938.

    Article  Google Scholar 

  7. Chen S.-F., Nieh S., Jao S.-W., Wu M.-Z., Liu C.-L., Chang Y.-C., Lin Y.-S. 2013. The paracrine effect of cancer-associated fibroblast-induced interleukin-33 regulates the invasiveness of head and neck squamous cell carcinoma. J. Pathol. 231, 180–189.

    Article  CAS  Google Scholar 

  8. Jovanovic I.P., Pejnovic N.N., Radosavljevic G.D., Pantic J.M., Milovanovic M.Z., Arsenijevic N.N., Lukic M.L. 2014. Interleukin-33/ST2 axis promotes breast cancer growth and metastases by facilitating intratumoral accumulation of immunosuppressive and innate lymphoid cells. Int. J. Cancer. 134, 1669–1682.

    Article  CAS  Google Scholar 

  9. Xiao P., Wan X., Cui B., Liu Y., Qiu C., Rong J., Zheng M., Song Y., Chen L., He J., Tan Q., Wang X., Shao X., Liu Y., Cao X., Wang Q. 2016. Interleukin 33 in tumor microenvironment is crucial for the accumulation and function of myeloid-derived suppressor cells. Oncoimmunology. 5, e1063772.

    Article  Google Scholar 

  10. Wang C., Chen Z., Bu X., Han Y., Shan S., Ren T., Song W. 2016. IL-33 signaling fuels outgrowth and metastasis of human lung cancer. Biochem. Biophys. Res. Commun. 479, 461–468.

    Article  CAS  Google Scholar 

  11. Hu L., Fu Y., Zhang D., Zhang J. 2013. Serum IL-33 as a diagnostic and prognostic marker in non-small cell lung cancer. Asian Pacific J. Cancer Prev. 14, 2563–2566.

    Article  Google Scholar 

  12. Liu J., Shen J., Hu J., Huang W., Zhang G. 2014. Significance of interleukin-33 and its related cytokines in patients with breast cancers. Front. Immunol. 5, 141.

    Article  CAS  Google Scholar 

  13. Liu X., Zhu L., Lu X., Bian H., Wu X., Yang W., Qin Q. 2014. IL-33/ST2 pathway contributes to metastasis of human colorectal cancer. Biochem. Biophys. Res. Commun. 453, 486–492.

    Article  CAS  Google Scholar 

  14. Yu X.X., Hu Z., Shen X., Dong L.Y., Zhou W.Z., Hu W.H. 2015. IL-33 promotes gastric cancer cell invasion and migration via ST2–ERK1/2 pathway. Dig. Dis. Sci. 60, 1265–1272.

    Article  CAS  Google Scholar 

  15. Tsuda H., Komine M., Tominaga S., Ohtsuki M. 2017. Identification of the promoter region of human IL-33 responsive to induction by IFNγ. J. Dermatol. Sci. 85, 137–140.

    Article  CAS  Google Scholar 

  16. Gorbacheva A., Korneev K., Kuprash D., Mitkin N. 2018. The risk G allele of the single-nucleotide polymorphism rs928413 creates a CREB1-binding site that activates IL33 promoter in lung epithelial cells. Int. J. Mol. Sci. 19, 2911.

    Article  Google Scholar 

  17. Hasson S.A., Kane L.A., Yamano K., Huang C.H., Sliter D.A., Buehler E., Wang C., Heman-Ackah S.M., Hessa T., Guha R., Martin S.E., Youle R.J. 2013. High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature. 504, 291–295.

    Article  CAS  Google Scholar 

  18. Bommer G.T., MacDougald O.A. 2011. Regulation of lipid homeostasis by the bifunctional SREBF2-miR33a locus. Cell Metab. 13, 241–247.

    Article  CAS  Google Scholar 

  19. Moon Y.A., Liang G., Xie X., Frank-Kamenetsky M., Fitzgerald K., Koteliansky V., Brown M.S., Goldstein J.L., Horton J.D. 2012. The Scap/SREBP pathway is essential for developing diabetic fatty liver and carbohydrate-induced hypertriglyceridemia in animals. Cell Metab. 15, 240–246.

    Article  CAS  Google Scholar 

  20. Park H.J., Georgescu S.P., Du C., Madias C., Aronovitz M.J., Welzig C.M., Wang B., Begley U., Zhang Y., Blaustein R.O., Patten R.D., Karas R.H., Van Tol H.H., Osborne T.F., Shimano H., et al., 2008. Parasympathetic response in chick myocytes and mouse heart is controlled by SREBP. J. Clin. Invest. 118, 259–271.

    Article  CAS  Google Scholar 

  21. Hsu T.I., Wang M.C., Chen S.Y., Yeh Y.M., Su W.C., Chang W.C., Hung J.J. 2012. Sp1 expression regulates lung tumor progression. Oncogene. 31, 3973–3988.

    Article  CAS  Google Scholar 

  22. Wang R., Xu J., Xu J., Zhu W., Qiu T., Li J., Zhang M., Wang Q., Xu T., Guo R., Lu K., Yin Y., Gu Y., Zhu L., Huang P., et al., 2018. MiR-326/Sp1/KLF3: a novel regulatory axis in lung cancer progression. Cell Prolif. 52 (2), e12551.

    Article  Google Scholar 

  23. Huang C., Yonemura Y., Xiong B., Liu J., Yang X. 2018. Expression and prognosis analyses of forkhead box A (FOXA) family in human lung cancer. Gene. 685, 202–210.

    Article  Google Scholar 

  24. Zhao Y., Ma J., Fan Y., Wang Z., Tian R., Ji W., Zhang F., Niu R. 2018. TGF-β transactivates EGFR and facilitates breast cancer migration and invasion through canonical Smad3 and ERK/Sp1 signaling pathways. Mol. Oncol. 12, 305–321.

    Article  CAS  Google Scholar 

  25. Wang H., Liu X.S., Wang G., Zhang F., Meyer C.A., Fei T. 2013. A systematic approach identifies FOXA1 as a key factor in the loss of epithelial traits during the epithelial-to-mesenchymal transition in lung cancer. BMC Genomics. 14, 680.

    Article  CAS  Google Scholar 

  26. Li J., Zhang S., Zhu L., Ma S. 2018. Role of transcription factor FOXA1 in non-small cell lung cancer. Mol. Med. Rep. 17, 509–521.

    CAS  PubMed  Google Scholar 

  27. Schrijver W., Schuurman K., van Rossum A., Droog M., Jeronimo C., Salta S., Henrique R., Wesseling J., Moelans C., Linn S.C., van den Heuvel M., van Diest P., Zwart W. 2018. FOXA1 levels are decreased in pleural breast cancer metastases after adjuvant endocrine therapy, and this is associated with poor outcome. Mol. Oncol. 12, 1884–1894.

    Article  CAS  Google Scholar 

  28. Kaplan R.N., Riba R.D., Zacharoulis S., Bramley A.H., Vincent L., Costa C., MacDonald D.D., Jin D.K., Shido K., Kerns S.A., Zhu Z., Hicklin D., Wu Y., Port J.L., Altorki N., et al., 2005. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 438, 820–827.

    Article  CAS  Google Scholar 

  29. Yang Z., Gao X., Wang J., Xu L., Zheng Y., Xu Y. 2018. Interleukin-33 enhanced the migration and invasiveness of human lung cancer cells. Onco. Targets. Ther. 11, 843–849.

    Article  Google Scholar 

  30. Wang K., Shan S., Yang Z., Gu X., Wang Y., Wang C., Ren T., Wang K., Shan S., Yang Z., Gu X., Wang Y., Wang C., Ren T. 2017. IL-33 blockade suppresses tumor growth of human lung cancer through direct and indirect pathways in a preclinical model. Oncotarget. 8, 68571–68582.

    Article  Google Scholar 

  31. Hu H., Sun J., Wang C., Bu X., Liu X., Mao Y., Wang H. 2017. IL-33 facilitates endocrine resistance of breast cancer by inducing cancer stem cell properties. Biochem. Biophys. Res. Commun. 485, 643–650.

    Article  CAS  Google Scholar 

  32. Rheinbay E., Parasuraman P., Grimsby J., Tiao G., Engreitz J.M., Kim J., Lawrence M.S., Taylor-Weiner A., Rodriguez-Cuevas S., Rosenberg M., Hess J., Stewart C., Maruvka Y.E., Stojanov P., Cortes M.L., et al., 2017. Recurrent and functional regulatory mutations in breast cancer. Nature. 547, 55–60.

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 18-34-01004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Gorbacheva.

Ethics declarations

The authors declare that they have no conflict of interest.

This study does not contain any research involving humans or animals as research objects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbacheva, A.M., Kuprash, D.V. & Mitkin, N.A. Regulation of IL33 Gene Expression by SP1 and Foxa1 in Breast and Lung Cancer Cells. Mol Biol 55, 92–101 (2021). https://doi.org/10.1134/S0026893321010064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893321010064

Keywords:

Navigation