Skip to main content
Log in

CASC5 Gene Expression Changes Correlate with Targeted Mutations in Leukemia

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Dysfunction of genes that control mitosis and are responsible for the correct segregation of sister chromatids in anaphase is often accompanied by aneuploidy, which is frequently detected in leukemia. One of the components of the kinetochore complex, namely, the AF15q14/KNL1/CASC5 protein, is an important factor ensuring the correct binding of the pericentromeric region of chromosomes with the spindle microtubules. As shown recently, in some leukemias, the gene of this protein can be involved in the generation of the chromosomal translocation t(11;15)(q23;q14) or a variant of the chimeric MLL-AF15Q14 oncogene, which serves as a biomarker of poor prognosis. Despite the implication of mRNA of the CASC5 gene in oncogenesis of solid tumors, expression of this gene in hematopoietic neoplasms has not been studied. We analyzed expression levels of the CASC5 gene and the nearest regulatory genes, including WT1, APOBEC3A (A3A), and N-MYC. A pronounced decrease in CASC5 expression in bone marrow cells of primary leukemia patients compared with healthy donors was found. It was also shown that reduced expression of the CASC5 gene correlates with the detection of targeted mutations in patients composed two prognostic subgroups (favorable, unfavorable) with a significance level (p <0.05). It was noted that the change in the expression level of the CASC5 gene in acute myeloid leukemia is associated with overexpression of the genes WT1, A3A, and in some cases N-MYC and SPT16, which is consistent with the resistance to chemotherapy and leukemia progression. However, the question of which regulatory gene initiates leukemogenesis remains open.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Hayette S., Tigaud I., Vanier A., Martel S., Corbo L., Charrin C., Beillard E., Deleage G., Magaud J.P., Rimokh R. 2000. AF15q14, a novel partner gene fused to the MLL gene in an acute myeloid leukaemia with a t(11;15)(q23;q14). Oncogene. 19, 4446–4450.

    Article  CAS  Google Scholar 

  2. Kuefer M.U., Chinwalla V., Zeleznik-Le N.J., Behm F.G., Naeve C.W., Rakestraw K.M., Mukatira S.T., Raimondi S.C., Morris S.W. 2003. Characterization of the MLL partner gene AF15q14 involved in t(11;15)(q23;q14). Oncogene. 22, 1418–1424.

    Article  CAS  Google Scholar 

  3. Chinwalla V., Chien A., Odero M., Neilly M.B., Zeleznik-Le N.J., Rowley J.D. 2003. A t(11;15) fuses MLL to two different genes, AF15q14 and a novel gene MPFYVE on chromosome 15. Oncogene. 22, 1400–1410.

    Article  CAS  Google Scholar 

  4. Yang J.J., Park T.S., Lee S.T., Seo J.Y., Oh S.H., Cho E.H., Strehl S., Mühlegger N., Dworzak M.N., Zuna J., Pospisilova D., Meyer C., Marschalek R., Kim H.J., Kim S.H. 2014. Molecular characterization and clinical impact of t(11;15)(q23;q14-15) MLL-CASC5 rearrangement. Haematologica. 99, e11-3. https://doi.org/10.3324/haematol.2013.095638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Genin A., Desir J., Lambert N., Biervliet M., Van Der Aa N., Pierquin G., Killian A., Tosi M., Urbina M., Lefort A., Libert F., Pirson I., Abramowicz M. 2012. Kinetochore KMN network gene CASC5 mutated in primary microcephaly. Hum. Mol. Genet. 21, 5306–5317. https://doi.org/10.1093/hmg/dds386

    Article  CAS  PubMed  Google Scholar 

  6. Sloma I., Mitjavila-Garcia M.T., Feraud O., Griscelli F., Oudrhiri N., Marsafy S., Gobbo E., Divers D., Proust A., Smadja D.M., Desterke C., Carles A., Ma Y., Hirst M., Marra M.A., et al., 2017. Whole-genome analysis reveals unexpected dynamics of mutant subclone development in a patient with JAK2-V617F-positive chronic myeloid leukemia. Exp. Hematol. 53, 48–58. https://doi.org/10.1016/j.exphem.2017.05.007

    Article  CAS  PubMed  Google Scholar 

  7. Bogdanov K.V. and Takimoto M. 2008. Involvement of c-Abl and D40 (AF15Q14/CASC5) proteins in the regulation of cell proliferation and cancer. Cell Tissue Biol. 2 (4), 354–359.

    Article  Google Scholar 

  8. Takimoto M., Wei G., Dosaka-Akita H., Mao P., Kondo S., Sakuragi N., Chiba I., Miura T., Itoh N., Sasao T., Koya R.C., Tsukamoto T., Fujimoto S., Katoh H., Kuzumaki N. 2002. Frequent expression of new cancer/testis gene D40/AF15q14 in lung cancers of smokers. Br. J. Cancer. 86, 1757–1762.

    Article  CAS  Google Scholar 

  9. Bai T., Zhao Y., Liu Y., Cai B., Dong N., Li B. 2019. Effect of KNL1 on the proliferation and apoptosis of colorectal cancer cells. Technol. Cancer Res. Treat. 18, 1533033819858668. https://doi.org/10.1177/1533033819858668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bornhäuser M., Oelschlaegel U., Platzbecker U., Bug G., Lutterbeck K., Kiehl M.G., Schetelig J., Kiani A., Illmer T., Schaich M., Theuser C., Mohr B., Brendel C., Fauser A.A., Klein S., et al. 2009. Monitoring of donor chimerism in sorted CD34+ peripheral blood cells allows the sensitive detection of imminent relapse after allogeneic stem cell transplantation. Haematologica. 94, 1613–1617. https://doi.org/10.3324/haematol.2009.007765

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bogdanov K.V., Nikulina T.S., Lomaia E.G., Slyadnev M.N., Zaritskey A.Yu. 2017. Identification of oncogene mutations in leukemia patients using microchip-based PCR analysis. Russ. J. Bioorg. Chem. 43 (5), 544–551.

    Article  CAS  Google Scholar 

  12. Murphy K.M., Levis M., Hafez M.J., Geiger T., Cooper L.C., Smith B.D., Small D., Berg K.D. 2003. Detection of FLT3 internal tandem duplication and D835 mutations by a multiplex polymerase chain reaction and capillary electrophoresis assay. J. Mol. Diagn. 5, 96–102.

    Article  CAS  Google Scholar 

  13. Döhner K., Schlenk R.F., Habdank M., Scholl C., Rücker F.G., Corbacioglu A., Bullinger L., Fröhling S., Döhner H. 2005. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood. 106, 3740–3746.

    Article  Google Scholar 

  14. Bennour A., Beaufils N., Sennana H., Meddeb B., Saad A., Gabert J. 2010. E355G mutation appearing in a patient with e19a2 chronic myeloid leukaemia resistant to imatinib. J. Clin. Pathol. 8, 737–740.

    Article  Google Scholar 

  15. Gabert J., Beillard E., van der Velden V.H., Bi W., Grimwade D., Pallisgaard N., Barbany G., Cazzaniga G., Cayuela J.M., Cavé H., Pane F., Aerts J.L., De Micheli D., Thirion X., Pradel V., et al. 2003. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia : A Europe Against Cancer program. Leukemia. 17, 2318–2357.

    Article  CAS  Google Scholar 

  16. Beillard E., Pallisgaard N., van der Velden V.H., Bi W., Dee R., van der Schoot E., Delabesse E., Macintyre E., Gottardi E., Saglio G., Watzinger F., Lion T., van Dongen J.J., Hokland P., Gabert J. 2003. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using ‘real-time’ quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR): A Europe Against Cancer program. Leukemia. 17, 2474–2486.

    Article  CAS  Google Scholar 

  17. Cilloni D., Renneville A., Hermitte F., Hills R.K., Daly S., Jovanovic J.V., Gottardi E., Fava M., Schnittger S., Weiss T., Izzo B., Nomdedeu J., van der Heijden A., van der Reijden B.A., Jansen J.H., et al. 2009. Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: A European Leukemia Net study. J. Clin. Oncol. 27, 5195–5201. https://doi.org/10.1200/JCO.2009.22.4865

    Article  CAS  PubMed  Google Scholar 

  18. Verma R., Babu A. 1989. In Human Chromosomes: Manual of Basic Techniques. New York: Pergamon Press, pp. 45–67.

    Google Scholar 

  19. Gubler E.V., Genkin A.A. 1969. Primenenie kriteriev neparametricheskoi statistiki dlya otsenki razlichii dvukh grupp nablyudenii v mediko-biologicheskikh issledovaniyakh (Using Nonparametric Statistical Tests for Evaluating Differences between Two Groups of Observations in Medicobiological Research). Moscow: Meditsina.

  20. Gleissner B., Gökbuget N., Bartram C.R., Janssen B., Rieder H., Johannes W.G., Janssen J.W.G., Fonatsch C., Heyll A., Voliotis D., Beck J., Lipp T., Munzert G., Maurer J., Hoelzer D. 2002. Leading prognostic relevance of the BCR–ABL translocation in adult acute B-lineage lymphoblastic leukemia: A prospective study of the German Multicenter Trial Group and confirmed polymerase chain reaction analysis. Blood. 99, 1536–1543. https://doi.org/10.1182/blood.v99.5.1536

    Article  CAS  PubMed  Google Scholar 

  21. Molica M., Zacheo I., Diverio D., Alimena G., Breccia M. 2015. Long-term outcome of chronic myeloid leukaemia patients with p210 and p190 co-expression at baseline. Br. J. Haematol. 169, 148–150. https://doi.org/10.1111/bjh.13184

    Article  PubMed  Google Scholar 

  22. Sallmyr A., Fan J., Datta K., Kim K., Grosu D., Shapiro P., Small D., Rassool F. 2007. Internal tandem duplication of FLT3 (FLT3/ITD) induces increased ROS production, DNA damage, and misrepair: Implications for poor prognosis in AML. Blood. 111, 3173–3182. https://doi.org/10.1182/blood-2007-05-092510

    Article  CAS  Google Scholar 

  23. McLean T.W., Ringold S., Neuberg D., Stegmaier K., Tantravahi R., Ritz J., Koeffler H.P., Takeuchi S., Janssen J. W., Seriu T., Bartram C.R., Sallan S.E., Gilliland D.G., Golub T.R. 1996. TEL/AML-1 dimerizes and is associated with a favorable outcome in childhood acute lymphoblastic leukemia. Blood. 88, 4252–4258.

    Article  CAS  Google Scholar 

  24. Verma D., Kantarjian H.M., Jones D., Luthra R., Borthakur G., Verstovsek S., Rios M.B., Cortes J. 2009. Chronic myeloid leukemia (CML) with P190 BCR-ABL: Analysis of characteristics, outcomes, and prognostic significance. Blood. 114, 2232–2235. https://doi.org/10.1182/blood-2009-02-204693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Grimwade D., Walker H., Oliver F., Wheatley K., Harrison C., Harrison G., Rees J., Hann I., Stevens R., Burnett A., Goldstone A. 1998. The importance of diagnostic cytogenetics on outcome in AML: Analysis of 1.612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood. 92, 2322–2333.

    Article  CAS  Google Scholar 

  26. Becker H., Marcucci G., Maharry K., Margeson D., Whitman S.P., Wu Y., Schwind S., Paschka P., Powell B.L., Carter T.H., Kolitz J.E., Wetzler M., Carroll A.J., Baer M.R., Caligiuri M.A., e al. 2010. Favorable prognostic impact of NPM1 mutations in older patients with cytogenetically normal de novo acute myeloid leukemia and associated gene- and microRNA-expression signatures: A Cancer and Leukemia Group B study. J. Clin. Oncol. 28, 596–604. https://doi.org/10.1200/JCO.2009.25.1496

    Article  CAS  PubMed  Google Scholar 

  27. Kawagoe H., Kandilci A., Kranenburg T.A., Grosveld G.C. 2007. Overexpression of N-Myc rapidly causes acute myeloid leukemia in mice. Cancer Res. 67, 10677–10685.

    Article  CAS  Google Scholar 

  28. Astolfi A., Vendemini F., Urbini M., Melchionda F., Masetti R., Franzoni M., Libri V., Serravalle S., Togni M., Paone G., Montemurro L., Bressanin D., Chiarini F., Martelli A.M., Tonelli R., Pession A. 2014. MYCN is a novel oncogenic target in pediatric T-cell acute lymphoblastic leukemia. Oncotarget. 5, 120–130.

    Article  Google Scholar 

  29. Alaminos M., Mora J., Cheung N.K., Smith A., Qin J., Chen L., Gerald W.L. 2003. Genome-wide analysis of gene expression associated with MYCN in human neuroblastoma. Cancer Res. 63, 4538–4546.

    CAS  PubMed  Google Scholar 

  30. Carter D.R., Murray J., Cheung B.B., Gamble L., Koach J., Tsang J., Sutton S., Kalla H., Syed S., Gifford A.J., Issaeva N., Biktasova A., Atmadibrata B., Sun Y., Sokolowski N., et al. 2015. Therapeutic targeting of the MYC signal by inhibition of histone chaperone FACT in neuroblastoma. Sci. Transl. Med. 7, 312ra176. https://doi.org/10.1126/scitranslmed.aab1803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kiyomitsu T., Obuse C., Yanagida M. 2007. Human Blinkin/AF15q14 is required for chromosome alignment and the mitotic checkpoint through direct interaction with Bub1 and BubR1. Dev. Cell. 13, 663–676. https://doi.org/10.1016/j.devcel.2007.09.005

    Article  CAS  PubMed  Google Scholar 

  32. Tipton A.R., Wang K., Link L., Bellizzi J.J., Huang H., Yen T., Liu S. 2011. BUBR1 and closed MAD2 (C-MAD2) interact directly to assemble a functional mitotic checkpoint complex. J. Biol. Chem. 286, 21173–21179. https://doi.org/10.1074/jbc.M111.238543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shandilya J., Toska E., Richard D.J., Medler K.F., Roberts S.G. 2014. WT1 interacts with MAD2 and regulates mitotic checkpoint function. Nat. Commun. 5, 4903. https://doi.org/10.1038/ncomms5903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shu X., Liu M., Lu Z., Zhu C., Meng H., Huang S., Zhang X., Yi C. 2018. Genome-wide mapping reveals that deoxyuridine is enriched in the human centromeric DNA. Nat. Chem. Biol. 14, 680–687. https://doi.org/10.1038/s41589-018-0065-9

    Article  CAS  PubMed  Google Scholar 

  35. Richardson S.R., Narvaiza I., Planegger R.A., Weitzman M.D., Moran J.V. 2014. APOBEC3A deaminates transiently exposed single-strand DNA during LINE-1 retrotransposition. eLife. 3, e02008. https://doi.org/10.7554/eLife.02008

    Article  PubMed  PubMed Central  Google Scholar 

  36. Otto T., Horn S., Brockmann M., Eilers U., Schüttrumpf L., Popov N., Kenney A.M., Schulte J.H., Beijersbergen R., Christiansen H., Berwanger B., Eilers M. 2009. Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. Cancer Cell. 15, 67–78. https://doi.org/10.1016/j.ccr.2008.12.005

    Article  CAS  PubMed  Google Scholar 

  37. Bogen D., Wei J.S., Azorsa D.O., Ormanoglu P., Buehler E., Guha R., Keller J.M., Griner L.A.M., Ferrer M., Song Y.K., Liao H., Mendoza A., Gryder B.E., Sindri S., He J., et al. 2015. Aurora B kinase is a potent and selective target in MYCN-driven neuroblastoma. Oncotarget. 6, 35247–35262. https://doi.org/10.18632/oncotarget.6208

    Article  PubMed  PubMed Central  Google Scholar 

  38. Schnerch D., Schmidts A., Follo M., Udi J., Felthaus J., Pfeifer D., Engelhardt M., Wäsch R. 2013. BubR1 is frequently repressed in acute myeloid leukemia and its re-expression sensitizes cells to antimitotic therapy. Haematologica. 98, 1886–1895. https://doi.org/10.3324/haematol.2013.087452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Krapf G., Kaindl U., Kilbey A., Fuka G., Inthal A., Joas R., Mann G., Neil J.C., Haas O.A., Panzer-Grümayer E.R. 2010. ETV6/RUNX1 abrogates mitotic checkpoint function and targets its key player MAD2L1. Oncogene. 29, 3307–3312. https://doi.org/10.1038/onc.2010.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wolanin K., Magalska A., Kusio-Kobialka M., Podszywalow-Bartnicka P., Vejda S., McKenna S.L., Mosieniak G., Sikora E., Piwocka K. 2010. Expression of oncogenic kinase Bcr-Abl impairs mitotic checkpoint and promotes aberrant divisions and resistance to microtubule-targeting agents. Mol. Cancer Ther. 9, 1328–1338. https://doi.org/10.1158/1535-7163.MCT-09-0936

    Article  CAS  PubMed  Google Scholar 

  41. Zipeto M.A., Court A.C., Sadarangani A., Delos Santos N.P., Balaian L., Chun H.J., Pineda G., Morris S.R., Mason C.N., Geron I., Barrett C., Goff D.J., Wall R., Pellecchia M., Minden M., et al. 2016. ADAR1 activation drives leukemia stem cell self-renewal by impairing Let-7 biogenesis. Cell Stem Cell. 19, 177–191. https://doi.org/10.1016/j.stem.2016.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jiang Q., Crews L.A., Barrett C.L., Chun H.J., Court A.C., Isquith J.M., Zipeto M.A., Goff D.J., Minden M., Sadarangani A., Rusert J.M., Dao K.H., Morris S.R., Goldstein L.S., Marra M.A., et al. 2013. ADAR1 promotes malignant progenitor reprogramming in chronic myeloid leukemia. Proc. Natl. Acad. Sci. U. S. A. 110, 1041–1046. https://doi.org/10.1073/pnas.1213021110

    Article  PubMed  Google Scholar 

  43. Galipon J., Ishii R., Suzuki Y., Tomita M., Ui-Tei K. 2017. Differential binding of three major human ADAR isoforms to coding and long non-coding transcripts. Genes (Basel). 8, pii: E68. https://doi.org/10.3390/genes8020068

    Article  CAS  PubMed  Google Scholar 

  44. Sakurai M., Shiromoto Y., Ota H., Song C., Kossenkov A.V., Wickramasinghe J., Showe L.C., Skordalakes E., Tang H.Y., Speicher D.W., Nishikura K. 2017. ADAR1 controls apoptosis of stressed cells by inhibiting Staufen1-mediated mRNA decay. Nat. Struct. Mol. Biol. 24, 534–543. https://doi.org/10.1038/nsmb.3403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Niavarani A., Currie E., Reyal Y., Anjos-Afonso F., Horswell S., Griessinger E., Luis Sardina J., Bonnet D. 2015. APOBEC3A is implicated in a novel class of G-to-A mRNA editing in WT1 transcripts. PLoS One. 10, e0120089. https://doi.org/10.1371/journal.pone.0120089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Orphanides G., Wu W.H., Lane W.S., Hampsey M., Reinberg D. 1999. The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature. 400, 284–288.

    Article  CAS  Google Scholar 

  47. Belotserkovskaya R., Oh S., Bondarenko V.A., Orphanides G., Studitsky V.M., Reinberg D. 2003. FACT facilitates transcription-dependent nucleosome alteration. Science. 301, 1090–1093.

    Article  CAS  Google Scholar 

  48. Shi J., Whyte W.A., Zepeda-Mendoza C.J., Milazzo J.P., Shen C., Roe J.S., Minder J.L., Mercan F., Wang E., Eckersley-Maslin M.A., Campbell A.E., Kawaoka S., Shareef S., Zhu Z., Kendall J., et al. 2013. Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation. Genes Dev. 27, 2648–2662. https://doi.org/10.1101/gad.232710.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pulikkan J.A., Hegde M., Ahmad H.M., Belaghzal H., Illendula A., Yu J., O’Hagan K., Ou J., Muller-Tidow C., Wolfe S.A., Zhu L.J., Dekker J., Bushweller J.H., Castilla L.H. 2018. CBFβ-SMMHC inhibition triggers apoptosis by disrupting MYC chromatin dynamics in acute myeloid leukemia. Cell. 174, 172–186.e21. https://doi.org/10.1016/j.cell.2018.05.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lucena-Araujo A.R., de Oliveira F.M., Leite-Cueva S.D., dos Santos G.A., Falcao R.P., Rego E.M. 2011. High expression of AURKA and AURKB is associated with unfavorable cytogenetic abnormalities and high white blood cell count in patients with acute myeloid leukemia. Leuk. Res. 35, 260–264. https://doi.org/10.1016/j.leukres.2010.07.034

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This article did not require special funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Bogdanov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in the present study were in accordance with the ethical standards of the institutional research ethics committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all patients and healthy donors involved in the study.

Additional information

Translated by D. Novikova, K. Bogdanov

Abbreviations: B-ALL, B-cell acute lymphoblastic leukemia; T‑ALL, T-cell acute lymphoblastic leukemia; MDS, myelodysplastic syndrome; AML, acute myeloid leukemia; CML, chronic myeloid leukemia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogdanov, K.V., Merzlikina, O.V., Mirolyubova, Y.V. et al. CASC5 Gene Expression Changes Correlate with Targeted Mutations in Leukemia. Mol Biol 55, 121–132 (2021). https://doi.org/10.1134/S0026893321010027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893321010027

Keywords:

Navigation