Skip to main content
Log in

Molecular Polymorphism of β-Galactosidase LAC4 Genes in Dairy and Natural Strains of Kluyveromyces Yeasts

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—

The ability to ferment lactose is a characteristic peculiarity of dairy Kluyveromyces lactis yeasts; the vast majority of other yeast species are not able to assimilate this disaccharide. Molecular polymorphism of LAC4 genes encoding β-galactosidase controlling lactose fermentation is not well studied, and the published data concern only a single strain (K. lactis var. lactis NRRL Y-1140) isolated from cream in the United States. We studied β-galactosidase genes in lactose-fermenting K. lactis strains isolated from dairy products and natural sources in different regions of the world using molecular karyotyping, Southern hybridization, and sequencing. It was established that the ability to ferment lactose in K. lactis var. lactis dairy yeasts is controlled by at least three polymeric LAC loci with different chromosomal localization: LAC1 (chromosome III), LAC2 (II), and LAC3 (IV). Most of the strains we studied had the LAC2 locus. A comparative analysis of β-galactosidases of the Kluyveromyces genus yeasts and these enzymes from other yeasts was conducted for the first time. Phylogenetic analysis detected significant differences between the LAC4 proteins of yeasts of the Kluyveromyces genus (K. lactis, K. marxianus, К. aestuarii, K. nonfermentans, K. wickerhamii), Scheffersomyces stipitis, Sugiyamaella lignohabitans, and Debaryomyces hansenii. A correlation between β-galactosidase sequences and ecological origin (dairy products and natural sources) of Kluyveromyces strains was found. The group of dairy strains is heterogeneous and includes K. lactis var. lactis and K. marxianus yeasts (99.80–100% similarity), which indicates a common origin of their LAC4 genes. Phylogenetic analysis of β-galactosidases indicates a close genetic relationship of dairy and hospital strains of K. lactis var. lactis and K. marxianus. Clinical isolates are able to ferment lactose and appear to originate from the dairy yeasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Kurtzman C.P. 2003. Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulospora. FEMS Yeast Res. 4, 233–245.

    Article  CAS  Google Scholar 

  2. Lachance M.-A., Kurtzman C.P., Fell J.W., Boekhout T. 2011. Kluyveromyces van der Walt (1971). In: The Yeasts. A Taxonomic Study. Eds. Kurtzman C.P., Fell J.W. Amsterdam: Elsevier, pp. 471–482.

  3. Naumov G.I. 2006. Genetics of lactose utilization polymorphism in yeast Kluyveromyces marxianus. Dokl. Akad. Nauk. 409 (3), 422–424.

    Google Scholar 

  4. Naumov G.I. 2008. Identification of the lactose LAC gene superfamilies in Kluyveromyces yeast. Dokl. Biochem. Biophys. 420, 158–160.

    Article  CAS  Google Scholar 

  5. Varela J.A., Puricelli M., Ortiz-Merino R.A., Giacomobono R., Braun-Galleani S., Wolfe K.H., Morrissey J.P. 2019. Origin of lactose fermentation in Kluyveromyces lactis by interspecies transfer of a neofunctionalized gene cluster during domestication. Curr. Biol. 29, 4284–4290.

    Article  CAS  Google Scholar 

  6. Naumov G.I., Naumova E.S., Barrio E., Querol A. 2006. Genetic and molecular study of the inability of the yeast Kluyveromyces lactis var. drosophilarum to ferment lactose. Microbiology. 75 (3), 248–252.

    Article  CAS  Google Scholar 

  7. Riley M.I., Sreekrishna K., Bhairi S., Dickson R.C. 1987. Isolation and characterization of mutants of Kluyveromyces lactis defective in lactose transport. Mol. Gen. Genet. 208, 145–151.

    Article  CAS  Google Scholar 

  8. Dickson R.C., Riley M.I. 1989. The lactose-galactose regulon of Kluyveromyces lactis. In Yeast Genetic Engineering. Eds, Barr P.J., Brake A.J., Valenzuela P. Boston: Butterworth, pp. 19–40.

    Google Scholar 

  9. Gödecke A., Zachariae W., Arvanitidis A., Breunig K.D. 1991. Coregulation of the Kluyveromyces lactis lactose permease and β-galactosidase genes is achieved by interaction of multiple LAC9 binding sites in a 2.6 kbp divergent promoter. Nucleic Acids Res. 19, 5351–5358.

    Article  Google Scholar 

  10. Breunig K.D., Bolotin-Fukuhara M., Bianchi M.M., Bourgarel D., Falcone C., Ferrero I., Frontali L., Goffrini P., Krijger J.J., Mazzoni C., Milkowski C., Steensma H.Y., Wésolowski-Louvel M., Zeeman A.M. 2000. Regulation of primary carbon metabolism in Kluyveromyces lactis. Enz. Microb. Techn. 26, 771–780.

    Article  CAS  Google Scholar 

  11. Fairhead C., Dujon B. 2006). Structure of Kluyveromyces lactis subtelomeres: Duplications and gene content. FEMS Yeast Res. 6, 428–441.

    Article  CAS  Google Scholar 

  12. Herman A., Halvorson H. 1963. Identification of the structural gene for beta-glucosidase in Saccharomyces lactis. J. Bacteriol. 85 (4), 895–900.

    Article  CAS  Google Scholar 

  13. Wesolowski-Louvel M., Fukuhara H. 1995. A map of the Kluyveromyces lactis genome. Yeast. 11, 211–218.

    Article  CAS  Google Scholar 

  14. Naumov G.I., Naumova E.S. 2014. Polymeric lactose fermentation genes in the yeast Kluyveromyces lactis: a new locus LAC3. Dokl. Biol. Sciences. 455(3), 106–108.

    Article  CAS  Google Scholar 

  15. Kumar S., Stecher G., Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33 (7), 1870–1874.

    Article  CAS  Google Scholar 

  16. Naumova E.S., Sukhotina N.N., Naumov G.I. 2005. Molecular markers for differentiation between the closely related dairy yeast Kluyveromyces lactis var. lactis and wild Kluyveromyces lactis strains from the European “krassilnikovii” population. Microbiology. 74 (3), 329–335.

    Article  CAS  Google Scholar 

  17. Çuhadar T., Kalkancı A. 2017. Emerging pathogen: Candida kefyr (Kluvyeromyces marxianus). Mikrobiyol. Bul. 51 (4), 387–395. https://doi.org/10.5578/mb.61813

    Article  PubMed  Google Scholar 

  18. Hennequin C., Thierry A., Richard G.F., Lecointre G., Nguyen H.-V., Gaillardin C., Dujon B. 2001. Microsatellite typing as a new tool for identification of Saccharomyces cerevisiae strains. J. Clin. Microbiol. 3, 551–559.

    Article  Google Scholar 

  19. de Llanos R., Querol A., Planes A.M., Fernandez-Espinar M.T. 2004. Molecular characterization of clinical Saccharomyces cerevisiae isolates and their association with non-clinical strains. Syst. Appl. Microbiol. 27 (4), 427–435.

    Article  CAS  Google Scholar 

  20. Imre A., Rácz H.V., Antunovics Z., Rádai Z., Kovács R., Lopandic K., Pócsi I., Pfliegler W. P. 2019. A new, rapid multiplex PCR method identifies frequent probiotic origin among clinical Saccharomyces isolates. Microbiol. Res. 227, 126298. https://doi.org/10.1016/j.micres.2019.126298.

  21. Pfliegler W.P., Boros E., Pázmándi K., Jakab Á., Zsuga I., Kovács R., Urbán E., Antunovics Z., Bácsi A., Sipiczki M., Majoros L., Pócsi I. 2017. Commercial strain-derived clinical Saccharomyces cerevisiae can evolve new phenotypes without higher pathogenicity. Mol. Nutr. Food Res. 61 (11). https://doi.org/10.1002/mnfr.201601099

  22. Fukuhara H. 2003. The Kluyver effect revisited. FEMS Yeast Res. 3, 327–331.

    Article  CAS  Google Scholar 

  23. Fukuhara H. 2006. Kluyveromyces lactis: A retrospective. FEMS Yeast Res. 6, 323–324.

    Article  CAS  Google Scholar 

  24. Wesolowski-Louvel M., Goffrini P., Ferrero I., Fukuhara H. 1992. Glucose transport in the yeast Kluyveromyces lactis: 1. Properties of an inducible low-affinity glucose transporter gene. Mol. Gen. Genet. 333, 89–96.

    Article  Google Scholar 

  25. Naumov G.I. 2005. Why does Kluyveromyces wickerhamii yeast accumulates lactose but does not ferment it? Dokl. Akad. Nauk. 403, 847–849.

    Google Scholar 

  26. Varela J.A., Montini N., Scully D., Van der Ploeg R., Oreb M., Boles E., Hirota J., Akada R., Hoshida H., Morrissey J.P. 2017. Polymorphisms in the LAC12 gene explain lactose utilisation variability in Kluyveromyces marxianus strains. FEMS Yeast Res. 17(3). https://doi.org/10.1093/femsyr/fox021

  27. Naumov G.I. 2005. Domestication of Kluyveromyces lactis yeast: Transfer of β-galactosidase (LAC4) and lactose permease (LAC12) gene cluster? Dokl. Akad. Nauk. 401 (2), 279–281.

    Google Scholar 

  28. Poch O., L’Hôte H., Dallery V., Debeaux F., Fleer R., Sodoyer R. 1992. Sequence of the Kluyveromyces lactis β‑galactosidase: Comparison with prokaryotic enzymes and secondary structure analysis. Gene. 118, 55–63.

    Article  CAS  Google Scholar 

  29. Bussereau F., Casaregola S., Lafay J.-F., Bolotin-Fukuhara M. 2006. The Kluyveromyces lactis repertoire of transcriptional regulators. FEMS Yeast Res. 6, 325–335.

    Article  CAS  Google Scholar 

  30. Naumov G.I., Naumova E.S., Glushakova A.M., Kachalkin A.V., Chernov I.Yu. 2014. Finding of dairy yeasts Kluyveromyces lactis var. lactis in natural habitats. Microbiology. 83 (6), 782–786.

    Article  CAS  Google Scholar 

  31. Naumova E.S., Naumov G.I., Michailova Yu.V., Martynenko N.N., Masneuf-Pomarède I. 2011. Genetic diversity study of the yeast Saccharomyces bayanus var. uvarum reveals introgressed subtelomeric Saccharomyces cerevisiae genes. Res. Microbiol. 162 (2), 204–213.

    Article  CAS  Google Scholar 

  32. Peter J., De Chiara M., Friedrich A., Yue J.-X., Pflieger D., Bergström A., Sigwalt A., Barre B., Freel K., Llored A., Cruaud C., Labadie K., Aury J.-M., Istace B., Lebrigand K., et al. 2018. Genome evolution across 1.011 Saccharomyces cerevisiae isolates. Nature. 556 (7701), 339–344

    Article  CAS  Google Scholar 

  33. Larson G., Fuller D.Q. 2014. The evolution of animal domestication. Annu. Rev. Ecol. Evol. Syst. 45, 115–136.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (Russian–Taiwanese grant no. 18-54-52002 MNT_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Naumova.

Ethics declarations

The authors declare that they have no conflict of interest.

This article does not contain any studies involving human participants or animals performed by any of the authors.

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyutova, L.V., Naumov, G.I., Shnyreva, A.V. et al. Molecular Polymorphism of β-Galactosidase LAC4 Genes in Dairy and Natural Strains of Kluyveromyces Yeasts. Mol Biol 55, 66–74 (2021). https://doi.org/10.1134/S0026893321010106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893321010106

Keywords:

Navigation