Skip to main content
Log in

Mitomycin C Treatment of Stromal Layers Enhances the Support of In Vitro Hematopoiesis in Co-Culture Systems

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

A study was made of the effect that mitomycin C (MitC) treatment of stromal layers of NIH 3T3 cells expressing Jagged1, a ligand of the Notch receptor, exerts on the growth of hematopoietic Lin(–) mouse bone marrow cells in a co-culture system. MitC treatment of stromal cells significantly increased the number of hematopoietic cells and the frequency of colony-forming cells in stromal co-cultures. Transcriptome analysis of control and MitC-treated stromal cell samples was performed by differential RNA sequencing, and genes downregulated by MitC treatment were predominantly associated with the control of cell proliferation, the cell cycle, chromosome segregation, and DNA metabolism. Induction of key hematopoietic cytokines by MitC was not detected by the transcriptome analysis and was therefore not a main factor in the activation of hematopoiesis on the treated stroma. At the same time, the set of the genes most strongly upregulated by MitC treatment is enriched in the genes for cytokines, growth factors, and cell surface proteins, which presumably contribute to enhanced hematopoiesis support on the MitC-treated stroma. Products of some of these genes have been implicated in expansion of hematopoietic stem/progenitor cells in vitro or in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Llames S., García-Pérez E., Meana Á., Larcher F., del Río M. 2015. Feeder layer cell actions and applications Tissue Eng. Part B Rev. 21, 345–353.

    Article  CAS  Google Scholar 

  2. Roy A., Krzykwa E., Lemieux R., Néron S. 2001. Increased efficiency of gamma-irradiated versus mitomycin C-treated feeder cells for the expansion of normal human cells in long-term cultures. J. Hematother. Stem Cell Res. 10, 873–880.

    Article  CAS  Google Scholar 

  3. Chugh R.M., Chaturvedi M., Yerneni L.K. 2015. An evaluation of the choice of feeder cell growth arrest for the production of cultured epidermis. Burns. 41, 1788–1795.

    Article  Google Scholar 

  4. Glettig D.L., Kaplan D.L. 2013. Extending human hematopoietic stem cell survival in vitro with adipocytes. Biores. Open Access. 2, 179–185.

    Article  CAS  Google Scholar 

  5. Xie C.Q., Lin G., Yuan D., Wang J., Liu T.C., Lu G.X. 2005. Proliferative feeder cells support prolonged expansion of human embryonic stem cells. Cell Biol. Int. 29, 623–628.

    Article  CAS  Google Scholar 

  6. Jubin K., Martin Y., Lawrence-Watt D.J., Sharpe J.R. 2011. A fully autologous co-culture system utilising nonirradiated autologous fibroblasts to support the expansion of human keratinocytes for clinical use. Cytotechnology. 63, 655–662.

    Article  CAS  Google Scholar 

  7. Love M.I., Huber W., Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.

    Article  Google Scholar 

  8. Eden E., Navon R., Steinfeld I., Lipson D., Yakhini Z. 2009. GOrilla: A tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinform. 10, 48.

    Article  Google Scholar 

  9. Raevskaya A.A., Savvateeva M.V., Bukhinnik S.S., Kandarakov O.F., Butylin P.A., Zhuk S.V., Demin A.M., Krasnov V.P., Zaritskii A.Yu., Belyavsky A.V. 2017. Murine and human hematopoietic progenitor cultures grown on stromal layers expressing Notch ligands. Mol. Biol. (Moscow). 51 (2), 313–322.

    Article  CAS  Google Scholar 

  10. Savvateeva M.V., Demin A.M., Krasnov V.P., Belyavsky A.V. 2016. Magnetic stromal layers for enhanced and unbiased recovery of co-cultured hematopoietic cells. Anal. Biochem. 509, 146–155.

    Article  CAS  Google Scholar 

  11. Kandarakov O.F., Demin A.M., Popenko V.I., Leonova O.G., Kopantseva E.E., Krasnov V.P., Be-lyavsky A.V.2020. Factors affecting the labeling of NIH 3T3 cells with magnetic nanoparticles. Mol. Biol. (Moscow). 54 (1), 99–110.

    Article  CAS  Google Scholar 

  12. Fehse B., Uhde A., Fehse N., Eckert H.G., Clausen J., Rüger R., Koch S., Ostertag W., Zander A.R., Stockschläder M. 1997. Selective immunoaffinity-based enrichment of CD34+ cells transduced with retroviral vectors containing an intracytoplasmatically truncated version of the human low-affinity nerve growth factor receptor (deltaLNGFR) gene. Hum. Gene Ther. 8 (15), 1815–1824.

    Article  CAS  Google Scholar 

  13. Hildinger M., Schilz A., Eckert H.G., Bohn W., Fehse B., Zander A., Ostertag W., Baum C. 1999. Bicistronic retroviral vectors for combining myeloprotection with cell-surface marking. Gene Ther. 6, 1222–1230.

    Article  CAS  Google Scholar 

  14. Kueh J., Richards M., Ng S.W., Chan W.K., Bongso A. 2006. The search for factors in human feeders that support the derivation and propagation of human embryonic stem cells: preliminary studies using transcriptome profiling by serial analysis of gene expression. Fertil. Steril. 85, 1843–1846.

    Article  CAS  Google Scholar 

  15. Stepp M.A., Pal-Ghosh S., Tadvalkar G., Li L., Brooks S.R., Morasso M.I. 2018. Molecular basis of mitomycin C enhanced corneal sensory nerve repair after debridement wounding. Sci. Rep. 8, 16960.

    Article  Google Scholar 

  16. Sato N., Haga J., Anazawa T., Kenjo A., Kimura T., Wada I., Mori T., Marubashi S., Gotoh M. 2017. Ex vivo pretreatment of islets with mitomycin c: Reduction in immunogenic potential of islets by suppressing secretion of multiple chemotactic factors. Cell Transplant. 26, 1392–1404.

    Article  Google Scholar 

  17. Felfly H., Xue J., Zambon A.C., Muotri A., Zhou D., Haddad G.G. 2011. Identification of a neuronal gene expression signature: Role of cell cycle arrest in murine neuronal differentiation in vitro. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R727–R745.

    Article  CAS  Google Scholar 

  18. Choong M.L., Tan A.C., Luo B., Lodish H.F. 2003. A novel role for proliferin-2 in the ex vivo expansion of hematopoietic stem cells. FEBS Lett. 550, 155–162.

    Article  CAS  Google Scholar 

  19. Nguyen Hoang A.T., Liu H., Juaréz J., Aziz N., Kaye P.M., Svensson M. 2010. Stromal cell-derived CXCL12 and CCL8 cooperate to support increased development of regulatory dendritic cells following Leishmania infection. J. Immunol. 185, 2360–2371.

    Article  CAS  Google Scholar 

  20. Istvánffy R., Vilne B., Schreck C., Ruf F., Pagel C., Grziwok S., Henkel L., Prazeres da Costa O., Berndt J., Stümpflen V., Götze K.S., Schiemann M., Peschel C., Mewes H.W., Oostendorp R.A.J. 2015. Stroma-derived connective tissue growth factor maintains cell cycle progression and repopulation activity of hematopoietic stem cells in vitro. Stem Cell Repts. 5, 702–715.

    Article  Google Scholar 

  21. Gupta R., Hong D., Iborra F., Sarno S., Enver T. 2007. NOV (CCN3) functions as a regulator of human hematopoietic stem or progenitor cells. Science. 316, 590–593.

    Article  CAS  Google Scholar 

  22. Costa D., Principi E., Lazzarini E., Descalzi F., Cancedda R., Castagnola P., Tavella S. 2017. LCN2 overexpression in bone enhances the hematopoietic compartment via modulation of the bone marrow microenvironment. J. Cell. Physiol. 232, 3077–3087.

    Article  CAS  Google Scholar 

  23. Winkler I.G., Hendy J., Coughlin P., Horvath A., Lévesque J.P. 2005. Serine protease inhibitors serpina1 and serpina3 are down-regulated in bone marrow during hematopoietic progenitor mobilization. J. Exp. Med. 201, 1077–1088.

    Article  CAS  Google Scholar 

  24. Goselink H.M., Hiemstra P.S., van Noort P., Barge R.M., Willemze R., Falkenburg J.H. 2006. Cytokine-dependent proliferation of human CD34+ progenitor cells in the absence of serum is suppressed by their progeny’s production of serine proteinases. Stem Cells. 24, 299–306.

    Article  CAS  Google Scholar 

  25. van Galen P., Kreso A., Wienholds E., Laurenti E., Eppert K., Lechman E.R., Mbong N., Hermans K., Dobson S., April C., Fan J.B., Dick J.E. 2014. Reduced lymphoid lineage priming promotes human hematopoietic stem cell expansion. Cell Stem Cell. 14, 94–106

    Article  CAS  Google Scholar 

  26. Ikawa T., Masuda K., Huijskens M.J.A.J., Satoh R., Kakugawa K., Agata Y., Miyai T., Germeraad W.T.V., Katsura Y., Kawamoto H. 2015. Induced developmental arrest of early hematopoietic progenitors leads to the generation of leukocyte stem cells. Stem Cell Repts. 5, 716–727.

    Article  CAS  Google Scholar 

  27. Lindsey S., Papoutsakis E.T. 2012. The evolving role of the aryl hydrocarbon receptor (AHR) in the normophysiology of hematopoiesis. Stem Cell Rev. Rep. 8, 1223–1235.

    Article  CAS  Google Scholar 

  28. Bennett J.A., Singh K.P., Welle S.L., Boule L.A., Lawrence B.P., Gasiewicz T.A. 2018. Conditional deletion of Ahr alters gene expression profiles in hematopoietic stem cells. PLoS One. 13, e0206407.

    Article  Google Scholar 

  29. Gasparetto M., Sekulovic S., Brocker C., Tang P., Zakaryan A., Xiang P., Kuchenbauer F., Wen M., Kasaian K., Witty M.F., Rosten P., Chen Y., Imren S., Duester G., Thompson D.C., et al. 2012. Aldehyde dehydrogenases are regulators of hematopoietic stem cell numbers and B-cell development. Exp. Hematol. 40, 318–329.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Genoanalitika (Moscow) for the skilful transcriptome analysis and primary bioinformatics data processing.

Funding

This work was supported by the Russian Science Foundation (project no. 18-14-00300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Belyavsky.

Ethics declarations

The authors declare that they have no conflict of interest.

This work does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Abbreviations: MitC, mitomycin C; LNGFR, low-affinity nerve growth factor receptor; 3T3-J/L, NIH 3T3-Jagged1-LNGFR; HSPC, hematopoietic stem/progenitor cell; RNA-Seq, high-throughput parallel RNA sequencing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandarakov, O.F., Kravatsky, Y.V., Polyakova, N.S. et al. Mitomycin C Treatment of Stromal Layers Enhances the Support of In Vitro Hematopoiesis in Co-Culture Systems. Mol Biol 55, 109–120 (2021). https://doi.org/10.1134/S0026893321010088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893321010088

Keywords:

Navigation