Skip to main content
Log in

Assessment of the v2016 NWCSAF CRR and CRR-Ph precipitation estimation performance over the Greek area using rain gauge data as ground truth

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

The NWCSAF (Support to Nowcasting and Very Short Range Forecasting Satellite Application Facility) software package provides operational products that ensure the optimum use of meteorological satellite data in Nowcasting and Very Short Range Forecasting. The National Observatory of Athens operates NWCSAF since 2016. The rainfall estimates obtained by the Convective Rainfall Rate (CRR) nighttime algorithm and the Convective Rainfall Rate from Cloud Physical Properties (CRR-Ph) algorithm of the 2016 version are verified against rainfall observations provided by the dense network of automated surface weather stations operated by the National Observatory of Athens (NOA) for a full year. For the verification a temporal upscaling to 30 min was applied to all datasets. Overall, CRR overestimates the extent of the precipitation areas while at the same time it underestimates the precipitation totals. CRR-Ph clearly outperforms the CRR nighttime algorithm regarding the accurate delineation of precipitation areas but it overestimates the precipitation totals. Heavier precipitation is consistently detected by both algorithms although the false alarms rate is high. Seasonal variations are found, with the most important the poorer estimation performance during spring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ba MB, Gruber A (2001) GOES multispectral rainfall algorithm (GMSRA). J App Meteorol 40(8):1500–1514

    Article  Google Scholar 

  • Boi P, Marrocu M, Giachetti A (2004) Rainfall estimation from infrared data using an improved version of the Auto-Estimator Technique. Int J Remote Sens 25(21):4657–4673

    Article  Google Scholar 

  • Chadwick RS, Grimes DIF, Saunders RW, Francis PN, Blackmore TA (2010) The TAMORA algorithm: satellite rainfall estimates over West Africa using multi-spectral SEVIRI data. Adv Geosci 25:3–9

    Article  Google Scholar 

  • Chakraborty S, Maitra A (2013) Interrelation between microphysical and optical properties of cloud and rainfall in the Indian region. Indian J Radio Space Phys 42:105–112

    Google Scholar 

  • Draper DW, Newell DA, Wentz FJ, Krimchansky S, Skofronick-Jackson GM (2015) The global precipitation measurement (GPM) microwave imager (GMI): instrument overview and early on-orbit performance. IEEE Journal of Sel Top Appl Earth Observ Remote Sens 8(7):3452–3462. https://doi.org/10.1109/JSTARS.2015.2403303

    Article  Google Scholar 

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107

    Article  Google Scholar 

  • Feidas H (2006) Validating three infrared-based rainfall retrieval algorithms for intense convective activity over Greece. Int J Remote Sens 27(13):2787–2812

    Article  Google Scholar 

  • Feidas H, Giannakos A (2011) Identifying precipitating clouds in Greece using multispectral infrared Meteosat Second Generation satellite data. Theor Appl Climatol 104:25–42. https://doi.org/10.1007/s00704-010-0316-5

    Article  Google Scholar 

  • Freud E, Rosenfeld D (2012) Linear relation between convective cloud drop number concentration and depth for rain initiation. J Geophys Res 117:D02207. https://doi.org/10.1029/2011JD016457

    Article  Google Scholar 

  • Geoffroy O, Brenguier JL, Sandu I (2008) Relationship between drizzle rate, liquid water path and droplet concentration at the scale of a stratocumulus cloud system. Atmos Chem Phys Discuss 8:3921–3959

    Google Scholar 

  • GMV Aerospace and Defence S.A.U and SAFNWC Project Team, Cable X, Ripodas P (2016) Interface control document for internal and external interfaces of the NWC/GEO, Technical Note. AEMET. http://www.nwcsaf.org. Accessed 9 Feb 2021

  • Hill PG, Stein THM, Roberts JA, Fletcher JK, Marsham JH, Groves J (2020) How skilful are Nowcasting Satellite Applications Facility products for tropical Africa? Meteorol Appl 27(6):e1966

    Article  Google Scholar 

  • Hong S-Y, Lim J-OJ (2006) The WRF single-moment 6-class microphysics scheme (WSM6). Asia Pac J Atmos Sci 42(2):129–151

    Google Scholar 

  • Hong S-Y, Lim K-SS, Lee Y-H, Ha J-C, Kim H-W, Ham H-W, Dudhia J (2010) Evaluation of the WRF double-moment 6-class microphysics scheme for precipitating convection. Adv Meteorol. https://doi.org/10.1155/2010/707253

    Article  Google Scholar 

  • Hou AY, Kakar KR, Neeck S, Azarbarzin AA, Kummerow CD, Kojima M, Oki R, Nakamura K, Iguchi T (2014) The global precipitation measurement mission. Bull Am Meteorol Soc 95(5):701–722. https://doi.org/10.1175/BAMS-D-13-00164.1

    Article  Google Scholar 

  • Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y, Bowman KP, Stocker EF (2007) The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8(1):38–55. https://doi.org/10.1175/JHM560.1

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Nelkin EJ (2010) The TRMM multi-satellite precipitation analysis (TMPA). Satellite rainfall applications for surface hydrology. Springer, Dordrecht, pp 3–22

    Chapter  Google Scholar 

  • Huffman GJ, Bolvin DT, Braithwaite D, Hsu K, Joyce R, Xie P, Yoo SH (2015) NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG) Algorithm Theoretical Basis Document (ATBD) Version, 4, 26.

  • Janjic ZI (1994) The Step-Mountain Eta Coordinate Model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122:927–945

    Article  Google Scholar 

  • Janjic ZI (2002) Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso Model. NCEP Office Note, No. 437, 61 p

  • Kain JS (2004) The Kain-Fritsch convective parameterization: An update. J Appl Meteorol 43:170–181

    Article  Google Scholar 

  • Katsanos D, Lagouvardos K, Kotroni V, Huffmann GJ (2004) Statistical evaluation of MPA-RT high-resolution precipitation estimates from satellite platforms over the central and eastern Mediterranean. Geophys Res Lett. https://doi.org/10.1029/2003GL019142

    Article  Google Scholar 

  • Kerdraon G, Le Gléau H (2016) Scientific and Validation report for the Cloud Product Processors of the NWC/GEO, Technical Note. Météo-France. http://www.nwcsaf.org. Accessed 9 Feb 2021

  • Kojima M, Miura T, Furukawa K, Hyakusoku Y, Ishikiri T, Kai H, Iguchi T, Hanado H, Nakagawa K (2012) Dual-frequency precipitation radar (DPR) development on the global precipitation measurement (GPM) core observatory, In: earth observing missions and sensors: development, implementation, and characterization II, vol. 8528, p. 85281A. International Society for Optics and Photonics. https://doi.org/10.1117/12.976823.

  • Kotroni V, Lagouvardos K (2008) Lightning occurrence in relation with elevation, terrain slope and vegetation cover over the Mediterranean. J Geophys Res 113:D21118. https://doi.org/10.1029/2008JD010605

    Article  Google Scholar 

  • Kühnlein M, Appelhans T, Ties B, Nauss T (2014) Precipitation estimates from MSG SEVIRI daytime, nighttime, and twilight data with random forests. J Appl Meteorol Climatol 53:2457–2479. https://doi.org/10.1175/JAMC-D-14-0082.1

    Article  Google Scholar 

  • Kummerow C, Barnes W, Kozu T, Shiue J, Simpson J (1998) The tropical rainfall measuring mission (TRMM) sensor package. J Atmos Ocean Technol 15(3):809–817

    Article  Google Scholar 

  • Lagouvadros K, Kotroni V, Betz HD, Schmidt K (2009) A comparison of lightning data provided by ZEUS and LINET networks over Western Europe. Nat Hazards Earth Syst Sci 9:1713–1717. https://doi.org/10.5194/nhess-9-1713-2009

    Article  Google Scholar 

  • Lagouvardos K, Kotroni V, Bezes A, Koletsis I, Kopania T, Lykoudis S, Mazarakis N, Papagiannaki K, Vougioukas S (2017) The automatic weather stations NOANN network of the National Observatory of Athens: operation and database. Geosci Data J 4(1):4–16. https://doi.org/10.1002/gdj3.44

    Article  Google Scholar 

  • Lagouvardos K, Dafis S, Chr G, Karagiannidis A, Kotroni V (2020) Investigating the role of extreme synoptic patterns and complex topography during two heavy precipitation events in Crete in February 2019. Climate. https://doi.org/10.3390/cli8070087

    Article  Google Scholar 

  • Le Gléau H (2016a) User Manual for the Cloud Product Processors of the NWC/GEO: Science Part, Technical Note. Météo-France. http://www.nwcsaf.org. Accessed 9 Feb 2021

  • Le Gléau H (2016b) Algorithm theoretical basis document for the cloud product processors of the NWC/GEO, Technical Note. Météo-France. http://www.nwcsaf.org. Accessed 9 Feb 2021

  • Liao L, Meneghini R (2019) Physical evaluation of GPM DPR single-and dual-wavelength algorithms. J Atmos Oceanic Technol 36(5):883–902. https://doi.org/10.1175/JTECH-D-18-0210.1

    Article  Google Scholar 

  • Liu Z, Ostrenga D, Teng W, Kempler S (2012) Tropical rainfall measuring mission (TRMM) precipitation data and services for research and applications. Bull Am Meteorol Soc 93(9):1317–1325. https://doi.org/10.1175/BAMS-D-11-00152.1

    Article  Google Scholar 

  • Luo S, Fu Y, Zhou S, Wang X, Wang D (2020) Analysis of the relationship between the cloud water path and precipitation intensity of mature typhoons in the Northwest Pacific Ocean. Adv Atmos Sci 37:359–376. https://doi.org/10.1007/s00376-020-9204-9

    Article  Google Scholar 

  • Marcos C, Sancho JM, Tapiador FJ (2015) NWC SAF convective precipitation product from MSG: a new day-time method based on cloud top physical properties. Thethys J Mediterr Meteorol Climatol 12:3–11. https://doi.org/10.3369/tethys.2015.12.01

    Article  Google Scholar 

  • Marcos C, Calbet X, Ripodas P (2016a) Scientific and validation report for the precipitation product processors of the NWC/GEO v2016. Technical Note. AEMET. http://www.nwcsaf.org. Accessed 9 Feb 2021

  • Marcos C, Rodríguez A, Calbet X, Ripodas P (2016b) User manual for the precipitation product processors of the NWC/GEO, Technical Note. AEMET. http://www.nwcsaf.org. Accessed 9 Feb 2021

  • Marcos C, Rodríguez A, Calbet X, Ripodas P (2016c) Algorithm theoretical basis document for the precipitation product processors of the NWC/GEO, Technical Note. AEMET. http://www.nwcsaf.org. Accessed 9 Feb 2021

  • Masuda K, Kobayashi T (2008) Relation between cloud optical thickness and precipitation derived from space-borne measurements. In: Remote Sensing of the Atmosphere and Clouds II. Vol. 7152. International Society for Optics and Photonics. https://doi.org/10.1117/12.804909.

  • Mesinger F (1993) Forecasting upper tropospheric turbulence within the framework of the Mellor-Yamada 2.5 closure. Res Act Atmos Ocean Model 18:4.28-4.29

    Google Scholar 

  • Mesinger F (2010) Several PBL parameterization lessons arrived at running an NWP model. In: International Conference on planetary boundary layer and climate change, IOP Publishing, IOP Conference series: earth and environmental science, p 13 https://doi.org/10.1088/1755-1315/13/1/012005/pdf.

  • Mlawer E, Taubman S, Brown P, Iacono M, Clough S (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102(D14):16663–16682

    Article  Google Scholar 

  • Mokdad F, Haddad B (2017) Improved infrared precipitation estimation approaches based on k-means clustering: application to north Algeria using MSG-SEVIRI satellite data. Adv Space Res 59:2880–2900. https://doi.org/10.1016/j.asr.2017.03.027

    Article  Google Scholar 

  • Nauss T, Kokhanovsky AA (2006) Discriminating raining from non-raining clouds at mid-latitudes using multispectral satellite data. Atmos Chem Phys 6:5031–5036

    Article  Google Scholar 

  • Pelajić I (2016) Validation of NWCSAF Precipitation products. Visiting Scientist Activity report, p 9

  • Prakash S, Mahesh C, Gairola RM, Pal PK (2010) Estimation of Indian summer monsoon rainfall using Kalpana-1 VHRR data and its validation using rain gauge and GPCP data. Meteorol Atmos Phys 110:45–57. https://doi.org/10.1007/s00703-010-0106-8

    Article  Google Scholar 

  • Ricciardelli E, Cimini D, Di Paola F, Romano F, Viggiano M (2014) A statistical approach for rain intensity differentiation using Meteosat Second Generation-Spinning Enhanced Visible and InfraRed Imager observations. Hydrol Earth Syst Sci 18:2559–2576. https://doi.org/10.5194/hess-18-2559-2014

    Article  Google Scholar 

  • Roebeling RA, Holleman I (2009) SEVIRI rainfall retrieval and validation using weather radar observations. J Geophys Res 114:D21202. https://doi.org/10.1029/2009JD012102

    Article  Google Scholar 

  • Simpson J, Kummerow C, Tao W-K, Adler RF (1996) On the tropical rainfall measuring mission (TRMM). Meteorol Atmos Phys 60:19–36

    Article  Google Scholar 

  • Siuki KS, Saghafian B, Moazami S (2017) Comprehensive evaluation of 3-hourly TRMM and half-hourly GPM-IMERG satellite precipitation products. Int J Remote Sens 38(2):558–571. https://doi.org/10.1080/01431161.2016.1268735

    Article  Google Scholar 

  • Skamarock WC, Klemp J, Dudhia J, Gill D, Barker D, Duda M, Huang X, Wang W, Powers J (2008) A Description of the Advanced Research WRF Version 3, NCAR Technical Note NCAR/TN-475+STR, https://doi.org/10.5065/D68S4MVH.

  • Skofronick-Jackson G, Petersen WA, Berg W, Kidd C, Stocker EF, Kirschbaum BD, Kakar R et al (2017) The Global precipitation measurement (GPM) mission for science and society. Bull Am Meteorol Soc 98(8):1679–1695. https://doi.org/10.1175/BAMS-D-15-00306.1

    Article  Google Scholar 

  • Stampoulis D, Anagnostou EN (2012) Evaluation of global satellite rainfall products over continental Europe. J Hydrometeorol 13(2):588–603. https://doi.org/10.1175/JHM-D-11-086.1

    Article  Google Scholar 

  • Sun J, Zheng S, Chai J, Xu G, Niu B (2016) Effects of mixed phase microphysical process on precipitation in a simulated convective cloud. Atmosphere. https://doi.org/10.3390/atmos7080097

    Article  Google Scholar 

  • Sungmin O, Foelsche U, Kirchengast G, Fuchsberger J, Tan J, Petersen WA (2017) Evaluation of GPM IMERG Early, Late, and Final rainfall estimates using WegenerNet gauge data in southeastern Austria. Hydrol Earth Syst Sci 21(12):6559–6572. https://doi.org/10.5194/hess-21-6559-2017

    Article  Google Scholar 

  • Tapiador FJ, Marcos C, Sancho JM (2019) The convective rainfall rate from cloud physical properties algorithm for meteosat second-generation satellites: microphysical basis and intercomparisons using an object-based method. Remote Sens 11(5):527. https://doi.org/10.3390/rs11050527

    Article  Google Scholar 

  • Tewari M, Chen F, Wang W, Dudhia J, LeMone MA, Mitchell K, Ek M, Gayno G, Wegiel J, Cuenca RH (2004) Implementation and verification of the unified NOAH land surface model in the WRF model. In: 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, pp 11–15

  • Thies B, Turek A, Nauss T, Bendix J (2010) Weather type dependent quality assessment of a satellite-based rainfall detection scheme for the mid-latitudes. Meteorol Atmos Phys 107:81–89. https://doi.org/10.1007/s00703-010-0076-x

    Article  Google Scholar 

  • Tubul Y, Koren I, Altaratz O, Heiblum RH (2017) On the link between precipitation and the ice water path over tropical and mid-latitude regimes as derived from satellite observations. Atmos Meas Tech Discuss. https://doi.org/10.5194/amt-2017-121

    Article  Google Scholar 

  • Wolff DB, Marks DA, Amitai E, Silberstein DS, Fisher BL, Tokay A, Wang J, Pippitt JL (2005) Ground validation for the tropical rainfall measuring mission (TRMM). J Atmos Ocean Technol 22(4):365–380. https://doi.org/10.1175/JTECH1700.1

    Article  Google Scholar 

  • Zilitinkevich SS (1995) Non-local turbulent transport: Pollution dispersion aspects of coherent structure of convective flows. In: Power H, Moussiopoulos N, Brebbia CA (eds) Air pollution III. Air pollution theory and simulation, vol I. Computational Mechanics Publications, Southampton, pp 53–60

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the EUMETSAT’s Nowcasting Satellite Application Facility (NWCSAF) for providing the software package and EUMETSAT for providing the satellite data.

Funding

The authors declare that the present research was not funded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Karagiannidis.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest or competing interests.

Additional information

Responsible Editor: Fedor Mesinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karagiannidis, A., Lagouvardos, K., Kotroni, V. et al. Assessment of the v2016 NWCSAF CRR and CRR-Ph precipitation estimation performance over the Greek area using rain gauge data as ground truth. Meteorol Atmos Phys 133, 879–890 (2021). https://doi.org/10.1007/s00703-021-00783-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-021-00783-4

Navigation