Skip to main content
Log in

Method of Mode Analysis for Mechanoacoustic Systems

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

In this paper, we describe a method for solving the problem for calculating the acoustic radiation of a deformable solid oscillating in a compressible fluid by using the mode analysis procedures found in mechanoacoustic systems. The method is based on an approximate representation of the acoustic radiation loss function and modifications of the Lanczos method. This allows constructing an efficient computational algorithm for finding sound-emitting forms of resonant oscillations and the corresponding complex values of eigenfrequencies. The developed method was tested using a model problem as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. R. B. Davis, L. N. Virgin, and A. M. Brown, “Cylindrical shell submerged in bounded acoustic media: a modal approach,” AIAA J. 46 (3), 752–763 (2008).

    Article  ADS  Google Scholar 

  2. W. Guo, T. Li, X. Zhu, and Y. Miao, “Sound-structure interaction analysis of an infinite-long cylindrical shell submerged in a quarter water domain and subject to a line-distributed harmonic excitation,” J. Sound Vib. 422, 48–61 (2018).

    Article  ADS  Google Scholar 

  3. K.-J. Bathe, Finite Element Procedures (Prentice Hall, New York, 1996).

    MATH  Google Scholar 

  4. R. G. Grimes, J. G. Lewis, and H. D. Simon, “A shifted block Lanczos algorithm for solving sparse symmetric generalized eigenproblems,” SIAM J. Matrix. Anal. Appl. 15 (1), 1994 (1991).

    MathSciNet  Google Scholar 

  5. A. Cline, G. Golub, and G. Platzman, “Calculations of normal modes of oceans using a Lanczos method,” in Sparse Matrix Computations, Ed. by J. Bunch and D. Rose (Acad. Press, New York, 1976), pp. 409–426.

    Google Scholar 

  6. J. Cullum and W. E. Donath, “A block Lanczos algorithm for computing the Q algebraically largest eigenvalues and a corresponding eigenspace of large sparse real symmetric matrices,” in Proc. IEEE Conf. Values and a Corresponding Eigenspace of Large Sparse Real Symmetric Matrices (Phoenix, 1974), pp. 505–509.

  7. R. Grimes, J. Lewis, and H. Simon, “Eigenvalue problems and algorithms in structural engineering,” in Large Scale Eigenvalue Problems, Ed. by J. Cullum and R. Willoughby (North-Holland, Amsterdam, 1986).

    Google Scholar 

  8. A. S. Veletsos and C. E. Ventura, “Modal analysis of non-classically damped linear systems,” Earthquake Eng. Struct. Dyn. 14, 217–243 (1986).

    Article  Google Scholar 

  9. J. M. Dickens, J. M. Nakagawa, and M. J. Wittbrodt, “A critique of mode acceleration and modal tiruncation augmentation methods for modal response analysis,” Comput. Struct. 62 (6), 985–998 (1997).

    Article  Google Scholar 

  10. A. S. Suvorov, E. M. Sokov, and P. V. Artel’nyi, “Numerical simulation of acoustic emission using acoustic contact elements,” Acoust. Phys. 60 (6), 694–703 (2014).

    Article  ADS  Google Scholar 

  11. O. Zienkiewicz and K. Morgan, Finite Elements and Approximation (Wiley, New York, 1983).

    MATH  Google Scholar 

  12. D. V. Hutton, Fundamentals of Finite Element Analysis (McGraw-Hill Co., New York, 2004).

    Google Scholar 

  13. A. Bermúdez, L. Hervella-Nieto, A. Prieto, and R. Rodrıguez, “An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems,” J. Comput. Phys. 223 (2), 469–488 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  14. L. F. Kallivokas and S. Lee, “Local absorbing boundaries of elliptical shape for scalar wave propagation in a half-plane,” Finite Elem. Anal. Des. 40 (15), 2063–2084 (2004).

    Article  MathSciNet  Google Scholar 

  15. F. Ihlenburg, “Finite element analysis of acoustic scattering,” Appl. Math. Sci. 132, 61–99 (1998).

    Article  MathSciNet  Google Scholar 

  16. M. B. Salin, E. M. Sokov, and A. S. Suvorov, “Numerical method of studying acoustic characteristics of complex elastic systems based on superelements and analytical boundary conditions,” in Collection of Scientific-Technical Papers “Hydroacoustics” (2011), No. 2, pp. 36–46 [in Russian].

  17. L. Komzsik, The Lanczos Method: Evolution and Application (SIAM, 2003).

  18. A. S. Suvorov, E. M. Sokov, and I. A. V’yushkina, “Regular algorithm for the automatic refinement of the spectral characteristics of acoustic finite element models,” Acoust. J. 62 (5), 593–600 (2016).

    Google Scholar 

  19. J.-F. Sigrist, “Modal analysis of fluid-structure interaction problems with pressure-based fluid finite elements for industrial applications,” Int. J. Multiphys. 1 (1), 123–149 (2007).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to P.L. Korotin, the head of the Center for Hydroacoustics, IAP RAS for discussions on the study results.

Funding

This work was supported by the Program of Fundamental Scientific Research of the state academies of sciences, project no. 0035-2019-0018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Suvorov.

Additional information

Translated by A. Ivanov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salin, M.B., Sokov, E.M. & Suvorov, A.S. Method of Mode Analysis for Mechanoacoustic Systems. Mech. Solids 55, 1318–1327 (2020). https://doi.org/10.3103/S0025654420080257

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654420080257

Keywords:

Navigation