Skip to main content
Log in

Calculations of the Evolution of Planetary Orbits

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The evolution of the planetary orbits of the Solar System is studied as part of a planetary problem. The displacement of the orbital elements is found by the numerical integration of the equations of perturbed motion written in non-degenerate variables. The results are presented as tables for the average displacements of the orbital elements and their oscillatory components for the epoch J2000, as well as graphs of the behavior of the orbital elements as functions of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. U. Le Verrier, “Théorie de mouvement de Mercure,” Ann. Observ. Imp. 5, 1–96 (1859).

    Google Scholar 

  2. U. Le Verrier, “Lettre de M. Le Verrier a M. Faye sur la théorie de Mercure et sur le mouvement du périhélie de cette planète,” C. R. Hebd. Seances Acad. Sci. 49, 379–383 (1859).

    Google Scholar 

  3. S. Newcomb, The Elements of the Four Inner Planets and the Fundamental Constants of Astronomy. Supplement to the American Ephemeria and Nautical Almanac for 1897 (Palala Press, 2016).

  4. N. T. Roseveare, Mercury’s Perihelion from Le Verrier to Einstein (Oxford Univ. Press, Oxford, 1982).

    MATH  Google Scholar 

  5. A. Einshtein, Sitzungsber (Preuss. Akad. Wiss., Berlin, 1915), pp. 778, 799, 831, 844.

    Google Scholar 

  6. E. M. Standish, X. X. Newhall, J. G. Williams, and W. M. Folkner, “JPL planetary and Lunar ephemerides, DE403/LE403,” Interoffice Memo. 314, 10–127, 1–22 (1995).

  7. E. V. Pitjeva, Modern Numerical Theories of the Movement of the Sun, Moon and Large Planets (Inst. Appl. Astron. RAS, St. Petersburg, 2003) [in Russian].

    Google Scholar 

  8. N. I. Amel’kin, “Precession of the orbit of Mercury,” Dokl. Phys. 64 (12), 470–475 (2019).

    Article  ADS  Google Scholar 

  9. G. N. Duboshin, Celestial Mechanics. Basic Problems and Methods (Fizmatgiz, Moscow, 1963) [in Russian].

    Google Scholar 

  10. G. N. Duboshin, Reference Manual on Celestial Mechanics and Astrodynamics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  11. J. L. Simon, P. Bretagnon, J. Chapront, M. Chapront-Touze, G. Francon, and J. Laskar, “Numerical expressions for precession formulae and mean elements for the Moon and the planets,” Astron. Astrophys. 282, 663–683 (1994).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Amel’kin.

Additional information

Translated by M. Chubarova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amel’kin, N.I. Calculations of the Evolution of Planetary Orbits. Mech. Solids 55, 1194–1209 (2020). https://doi.org/10.3103/S0025654420080038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654420080038

Keywords:

Navigation