Skip to main content
Log in

Ground-based gravitational wave detection and its implications

  • Review
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A bit of historical review is given for the concept of gravitational waves and detection experiments. In the presence of gravitational waves, it is frequently asked whether the laser light gets stretched and shrunk in the same way as the mirror distances in the interferometer so that gravitational waves cannot be measured. To answer this question, we have reviewed the interaction between light and gravitational waves carefully in both the transverse-traceless (TT) gauge and the proper detector or locally Lorentz frame. In the TT frame, the laser light directly interacts with gravitational waves, its frequency gets modified, but mirrors remain at rest to the linear order of a gravitational wave perturbation. In the detector frame, on the other hand, the frequency of light does not change while “distances” between the beam splitter and the mirrors get modified. Recent results for gravitational wave observations up to the first half of the third observation run in the advanced LIGO and the advanced Virgo are briefly summarized. Tests of general relativity based on gravitational wave data observed during O1 and O2 are described. These tests include residual and inspiral–merger–ringdown signal consistency tests, parameterized deviations in the waveform model, and constraint on the speed of gravitational waves by comparisons with the propagation of the electro-magnetic counterpart observed in the binary neutron star merger event. Some interesting events observed during O3a are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Laplace, Ouevres complétes de Laplace VIII (Reprint, Gauthier-Villars et fils, Paris, 1891)

  2. H. Poincaré, Revue générale des sciences pures et appliqués 19, 386 (1908), translated in Science and Method (Dover, New York, 1952)

    Google Scholar 

  3. A. Einstein, Königlich Preussische Akademie der Wissenschaften 688 (1916)

  4. R. M. Wald, General Relativity (The University of Chicago Press, , NY 1984)

    Book  MATH  Google Scholar 

  5. M. Maggiore, Gravitational waves volume 1: theory and experiments (Oxford University Press, 2017)

  6. D. Kennefick, Controversies in the history of the radiation reaction problem in general relativity, 1997, arXiv: gr-qc/9704002

  7. C. M. De Witt and D. Rickles (eds.), The role of gravitation in physics, report from the 1957 Chapel Hill Conference (Edition Open Acess 2017). https://edition-open-sources.org/sources/5

  8. A. A. E. Pirani, Acta Physica Polonica 15, 389 (1956)

    ADS  MathSciNet  Google Scholar 

  9. A. A. E. Pirani, reprinted on Gen. Relativ. Gravit. 41, 1215 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. A. A. E. Pirani, Phys. Rev. 105, 1089 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  11. H. Bondi, M. G. van der Burg and A. W. K. Metzner, Proc. Roy. Soc. Lond. A269, 21 (1962)

    ADS  Google Scholar 

  12. R. K. Sachs, ibid A270, 103 (1962)

  13. H. M. Lee, J. Korean Phys. Soc. 73, 684 (2018)

    Article  ADS  Google Scholar 

  14. B. S. Sathyaprakash and B. F. Schutz, Living Rev. Relativity 12, 2 (2009)

    Article  ADS  Google Scholar 

  15. C. Kim, B. B. P. Perera and M. A. McLaughlin, Mon. Non. Roy. Ast. Soc. 448, 928 (2015)

    Article  ADS  Google Scholar 

  16. J. Weber, Phys. Rev. 117, 306 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  17. C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation (W. H. Freeman and Company, San Francisco, 1973)

    Google Scholar 

  18. J. Weber, Phys. Rev. Lett. 22, 1320 (1969)

    Article  ADS  Google Scholar 

  19. P. Astone et al., Phys. Rev. D 87, 082002 (2013)

    Article  ADS  Google Scholar 

  20. S. E. Whitcomb, Class. Quantum Grav. 25, 114013 (2008)

    Article  ADS  Google Scholar 

  21. O. D. Aguiar, Res. Astron. Astrophys. 11, 1 (2011)

    Article  ADS  Google Scholar 

  22. K.S. Thorne, R.D. Blandford, Modern Classical Physics (Princeton University Press, 2017)

    MATH  Google Scholar 

  23. B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), Phys. Rev. X 6, 041015 (2016); Erratum, Phys. Rev. X 8, 039903(E) (2018)

  24. B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  25. B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), Phys. Rev. X 9, 031040 (2019)

    Google Scholar 

  26. B. Abbott et al. (Virgo and LIGO Scientific Collaborations), Phys. Rev. Lett. 119, 161101 (2017)

    Article  ADS  Google Scholar 

  27. B. P. Abbott et al., Nature 551, 85 (2017)

    Article  ADS  Google Scholar 

  28. R. Abbott et al. (LIGO Scientific and Virgo Collaborations), “GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run, Arxiv e-print (2020), arXiv:2010.14527 [gr-qc]

  29. M. Burgay et al., Nature 426, 531 (2003)

    Article  ADS  Google Scholar 

  30. B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), Phys. Rev. Lett. 116, 221101 (2016); Erratum, Phys. Rev. Lett. 121, 129902(E) (2018)

  31. B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), Phys. Rev. Lett. 118, 221101 (2017); Erratum, Phys. Rev. Lett. 121, 129901(E) (2018)

  32. B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), Phys. Rev. Lett. 119, 141101 (2017)

    Article  ADS  Google Scholar 

  33. B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), Phys. Rev. Lett. 123, 011102 (2019)

    Article  ADS  Google Scholar 

  34. B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), Phys. Rev. D 100, 104036 (2019)

    Article  ADS  Google Scholar 

  35. J. Meidam et al., Phys. Rev. D 97, 044033 (2018)

    Article  ADS  Google Scholar 

  36. N. Yunes and F. Pretorius, Phys. Rev. D 80, 122003 (2009)

    Article  ADS  Google Scholar 

  37. T. G. F. Li, W. Del Pozzo, S. Vitale, C. Van Den Broeck, M. Agathos, J. Veitch, K. Grover, T. Sidery, R. Sturani, and A. Vecchio, Phys. Rev. D 85, 082003 (2012)

    Article  ADS  Google Scholar 

  38. S. Khan, S. Husa, M. Hannam, F. Ohme, M. Pürrer, X. J. Forteza, and A. Bohé, Phys. Rev. D 93, 044007 (2016)

    Article  ADS  Google Scholar 

  39. C. K. Mishra, K. G. Arun, B. R. Iyer, and B. S. Sathyaprakash, Phys. Rev. D 82, 064010 (2010)

    Article  ADS  Google Scholar 

  40. S. Mirshekari, N. Yunes, and C. M. Will, Phys. Rev. D 85, 024041 (2012)

    Article  ADS  Google Scholar 

  41. L. Bernus, O. Minazzoli, A. Fienga, M. Gastineau, J. Laskar, and P. Deram, Phys. Rev. Lett. 123, 161103 (2019)

    Article  ADS  Google Scholar 

  42. C. de Rham, J. T. Deskins, A. J. Tolley, and S.-Y. Zhou, Rev. Mod. Phys. 89, 025004 (2017)

    Article  ADS  Google Scholar 

  43. B. P. Abbott et al. (LIGO Scientific, Virgo, Fermi-GBM, and INTEGRAL Collaborations), Astrophys. J. Lett. 848, L13 (2017)

    Article  ADS  Google Scholar 

  44. N. Cornish, D. Blas, and G. Nardini, Phys. Rev. Lett. 119, 161102 (2017)

    Article  ADS  Google Scholar 

  45. R. Abbott et al. (LIGO Scientific and Virgo Collaborations), Phys. Rev. D 102, 043015 (2020)

    Article  ADS  Google Scholar 

  46. B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), Astrophys. J. Lett. 892, L3 (2020)

    Article  ADS  Google Scholar 

  47. R. Abbott et al. (LIGO Scientific and Virgo Collaborations), Phys. Rev. Lett. 125, 101102 (2020)

    Article  ADS  Google Scholar 

  48. R. Abbott et al. (LIGO Scientific and Virgo Collaborations), Astrophys. J. Lett. 900, L13 (2020)

    Article  ADS  Google Scholar 

  49. S. E. Woosley, Astrophys. J., 836, 244 (2017)

    Article  ADS  Google Scholar 

  50. M. Mapelli et al., ibid. 888, 76 (2020)

  51. C. Kimball, C. Talbot, C. P. Berry, M. Carney, M. Zevin, E. Thrane, and V. Kalogera, Astrophys. J., 900, 177 (2020)

    Article  ADS  Google Scholar 

  52. R. Abbott et al. (LIGO Scientific and Virgo Collaborations), Astrophys. J. 896, L44 (2020)

    Article  ADS  Google Scholar 

  53. B. P. Abbott et al. (KAGRA Collaboration, LIGO Scientific Collaboration and Virgo Collaboration), Living Rev. Relativ. 23, 3 (2020)

    Article  ADS  Google Scholar 

  54. D. Reitze et al., BAAS 51, 035 (2019), Astro2020 APC White Papers, arXiv:1907.04833 [astro-ph.IM]

  55. M. Punturo et al., Class. Quant. Grav. 27, 194002 (2010)

    Article  ADS  Google Scholar 

  56. M. Maggiore et al., “Science case for the einstein telescope,” Arxiv e-print (2019), arXiv:1912.02622 [astro-ph.CO]

  57. G. Kang, AAPPS Bulletin 28, 25 (2018)

    Google Scholar 

  58. H. M. Lee, New Physics: Sae Mulli 66, 258 (2016)

    Article  Google Scholar 

  59. J.J. Oh and G. Kang, ibid. 66, 264 (2016);

  60. S. H. Oh, E. J. Son, W. Kim, J. J. Oh, H. W. Lee, J. Kim and Y.-M. Kim, ibid. 66, 283 (2016)

  61. C. Kim, H. S. Cho, G. Kang, H. W. Lee, C.-H. Lee and H. K. Lee, ibid. 66, 293 (2016)

  62. H. J. Paik et al., Class. Quantum Grav. 33, 075003 (2016)

    Article  ADS  Google Scholar 

  63. J. Harms and H. J. Paik, Phys. Rev. D 92, 022001 (2015)

    Article  ADS  Google Scholar 

  64. H. J. Paik, M. Vol Moody and R. S. Norton, Int. J. Mod. Phys. D 28, 1940001 (2019)

  65. H. J. Paik, H. M. Lee, K. Cho and J. Kim, New Physics: Sae Mulli, 66, 272 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Korea Institute of Science and Technology Information (K-20-L02-C09 and K-21-L02-C09) and by the Scientific Programs of the Asia Pacific Center for Theoretical Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gungwon Kang.

Additional information

G. Kang: Previously affiliated at Korea Institute of Science and Technology Information.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, G. Ground-based gravitational wave detection and its implications. J. Korean Phys. Soc. 78, 975–984 (2021). https://doi.org/10.1007/s40042-021-00088-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00088-0

Keywords

Navigation