Skip to main content
Log in

Progress in Higgs inflation

  • Review
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We review the recent progress in Higgs inflation focusing on Higgs-\(R^2\) inflation, primordial black hole production and the \(R^3\) term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Neglecting the kinetic term during the inflation, both theories are equivalent since \(\mathcal{L}/\sqrt{-g} \ni (M^2+\xi \phi ^2) R/2 -\lambda \phi ^4/4\) is mapped to \(M^2 R/2+(\xi ^2/4\lambda ) R^2\) by solving the field equation for \(\delta \phi \).

  2. In fact, the form of the action is different when the Palatini formalism is used, which regard the metrics and affine connection independently. In this review, we take the standard metric formalism.

  3. Even in non-Higgs inflation cases, large quantum fluctuation in de Sitter background \( {\mathcal {O}}(H/2\pi ) \) during inflation may cause a problem. See the Ref. [35].

  4. In fact, due to the non-renormalizability of the theory, there exists a dependence on the way to choose the renormalization scale, which is also called ‘prescription’. In this review, we choose \( \mu = \phi \), where \( \phi \) is the Jordan frame Higgs field value. For the meaning of the prescription dependence in detail, see Ref. [39].

  5. In fact, the Higgs boson decay to the longitudinal mode of the gauge boson may depend sensitively on higher order operators. See the Ref. [40].

  6. At linear order, there is a simple relation between the energy density fluctuation and the curvature perturbation:

    $$\begin{aligned} \delta = \frac{4}{9} \left( \frac{k}{aH} \right) ^{2} {\mathcal {R}} \end{aligned}$$
    (38)
  7. In fact, to generate a large enough power spectrum, \(\lambda _\text {min} = \lambda _\text {min}^\text {inf} - \delta c\), with \(\delta c\sim {\mathcal {O}}\left( 10^{-7}\right) \) at the corresponding scale, the \( \lambda _{\text {min}} \) must be smaller than the pure inflection value \( \lambda _{\text {min}} \) by as much as \( {\mathcal {O}}(10^{-7}) \) so that the potential should deviate from a true inflection point.

References

  1. F.L. Bezrukov, M. Shaposhnikov, Phys. Lett. B 659, 703 (2008). https://doi.org/10.1016/j.physletb.2007.11.072. arXiv:0710.3755

    Article  ADS  Google Scholar 

  2. A.A. Starobinsky Phys. Lett. 91B,99 (1980). https://doi.org/10.1016/0370-2693(80)90670-X [771(1980)]

  3. N. Aghanim et al. (Collaboration Planck), (2018). arXiv:1807.06209 [astro-ph.CO]

  4. Y. Akrami et al. (Collaboration Planck), (2018). arXiv:1807.06211 [astro-ph.CO]

  5. S.C. Park, S. Yamaguchi, JCAP 0808, 009 (2008). https://doi.org/10.1088/1475-7516/2008/08/009. arXiv:0801.1722 [hep-ph]

    Article  ADS  Google Scholar 

  6. C.P. Burgess, H.M. Lee, M. Trott, JHEP (2009). https://doi.org/10.1088/1126-6708/2009/09/103. arXiv:0902.4465 [hep-ph]

    Article  Google Scholar 

  7. J.L.F. Barbon, J.R. Espinosa, Phys. Rev. D 79, 081302 (2009). https://doi.org/10.1103/PhysRevD.79.081302. arXiv:0903.0355 [hep-ph]

    Article  ADS  Google Scholar 

  8. C.P. Burgess, H.M. Lee, M. Trott, JHEP 07, 007 (2010). https://doi.org/10.1007/JHEP07(2010)007. arXiv:1002.2730 [hep-ph]

    Article  ADS  Google Scholar 

  9. R.N. Lerner, J. McDonald, JCAP 1004, 015 (2010). https://doi.org/10.1088/1475-7516/2010/04/015. arXiv:0912.5463 [hep-ph]

    Article  ADS  Google Scholar 

  10. S.C. Park, C.S. Shin, Eur. Phys. J. C 79, 529 (2019). https://doi.org/10.1140/epjc/s10052-019-7037-4. arXiv:1807.09952 [hep-ph]

    Article  Google Scholar 

  11. F. Bezrukov, A. Magnin, M. Shaposhnikov, S. Sibiryakov, JHEP 01, 016 (2011). https://doi.org/10.1007/JHEP01(2011)016. arXiv:1008.5157 [hep-ph]

    Article  ADS  Google Scholar 

  12. Y. Hamada, H. Kawai, K.-Y. Oda, S.C. Park, Phys. Rev. Lett. 112, 241301 (2014). https://doi.org/10.1103/PhysRevLett.112.241301. arXiv:1403.5043 [hep-ph]

    Article  ADS  Google Scholar 

  13. F. Bezrukov, M. Shaposhnikov, Phys. Lett. B 734, 249 (2014). https://doi.org/10.1016/j.physletb.2014.05.074. arXiv:1403.6078 [hep-ph]

    Article  ADS  Google Scholar 

  14. Y. Hamada, H. Kawai, K.-Y. Oda, S.C. Park, Phys. Rev. D 91, 053008 (2015). https://doi.org/10.1103/PhysRevD.91.053008. arXiv:1408.4864 [hep-ph]

    Article  ADS  Google Scholar 

  15. G.F. Giudice, H.M. Lee, Phys. Lett. B 694, 294 (2011). https://doi.org/10.1016/j.physletb.2010.10.035. arXiv:1010.1417 [hep-ph]

    Article  ADS  Google Scholar 

  16. J.L.F. Barbon, J.A. Casas, J. Elias-Miro, J.R. Espinosa, JHEP 09, 027 (2015). https://doi.org/10.1007/JHEP09(2015)027. arXiv:1501.02231 [hep-ph]

    Article  Google Scholar 

  17. G.F. Giudice, H.M. Lee, Phys. Lett. B 733, 58 (2014). https://doi.org/10.1016/j.physletb.2014.04.020. arXiv:1402.2129 [hep-ph]

    Article  ADS  Google Scholar 

  18. Y. Ema, Phys. Lett B770, 403 (2017). https://doi.org/10.1016/j.physletb.2017.04.060. arXiv:1701.07665 [hep-ph]

    Article  ADS  Google Scholar 

  19. D. Gorbunov, A. Tokareva, Phys. Lett. B 788, 37 (2019). https://doi.org/10.1016/j.physletb.2018.11.015. arXiv:1807.02392 [hep-ph]

    Article  ADS  Google Scholar 

  20. A. Salvio, A. Mazumdar, Phys. Lett. B 750, 194 (2015). https://doi.org/10.1016/j.physletb.2015.09.020. arXiv:1506.07520

    Article  ADS  Google Scholar 

  21. X. Calmet, I. Kuntz, Phys. J. C 76, 289 (2016). https://doi.org/10.1140/epjc/s10052-016-4136-3. arXiv:1605.02236

    Article  ADS  Google Scholar 

  22. Y.C. Wang, T. Wang, Phys. Rev. D 96, 123506 (2017). https://doi.org/10.1103/PhysRevD.96.123506. arXiv:1701.06636

    Article  ADS  MathSciNet  Google Scholar 

  23. D.M. Ghilencea, Phys. Rev. D 98, 103524 (2018). https://doi.org/10.1103/PhysRevD.98.103524. arXiv:1807.06900 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  24. Y. Ema, JCAP 1909, 027 (2019). https://doi.org/10.1088/1475-7516/2019/09/027. arXiv:1907.00993 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  25. D.D. Canko, I.D. Gialamas, G.P. Kodaxis, (2019). arXiv:1901.06296

  26. M. He, R. Jinno, K. Kamada, S.C. Park, A.A. Starobinsky, J. Yokoyama, Phys. Lett. B 791, 36 (2019). https://doi.org/10.1016/j.physletb.2019.02.008. arXiv:1812.10099 [hep-ph]

    Article  ADS  Google Scholar 

  27. M. He, A.A. Starobinsky, J. Yokoyama, JCAP 1805, 064 (2018). https://doi.org/10.1088/1475-7516/2018/05/064. arXiv:1804.00409 [astro-ph.CO]

    Article  ADS  Google Scholar 

  28. A.  Gundhi C.F. Steinwachs, (2018). arXiv:1810.10546

  29. Y. Ema, R. Jinno, K. Mukaida, K. Nakayama, JCAP 1702, 045 (2017). https://doi.org/10.1088/1475-7516/2017/02/045. arXiv:1609.05209 [hep-ph]

    Article  ADS  Google Scholar 

  30. R. Jinno, M. Kubota, K.-Y. Oda, S.C. Park, JCAP 2003, 063 (2020). https://doi.org/10.1088/1475-7516/2020/03/063. arXiv:1904.05699 [hep-ph]

    Article  ADS  Google Scholar 

  31. D.Y. Cheong, S.M. Lee, S.C. Park, Phys. Lett. B 789, 336 (2019). https://doi.org/10.1016/j.physletb.2018.12.046. arXiv:1811.03622 [hep-ph]

    Article  ADS  Google Scholar 

  32. S.C. Park, JCAP 1901, 053 (2019). https://doi.org/10.1088/1475-7516/2019/01/053. arXiv:1810.11279 [hep-ph]

    Article  ADS  Google Scholar 

  33. G. Degrassi, S. Di Vita, J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Strumia, JHEP 08, 098 (2012). https://doi.org/10.1007/JHEP08(2012)098. arXiv:1205.6497 [hep-ph]

    Article  ADS  Google Scholar 

  34. F. Bezrukov, J. Rubio, M. Shaposhnikov, Phys. Rev. D 92, 083512 (2015). https://doi.org/10.1103/PhysRevD.92.083512. arXiv:1412.3811 [hep-ph]

    Article  ADS  Google Scholar 

  35. T. Markkanen, A. Rajantie, S. Stopyra, Front. Astron. Space Sci. 5, 40 (2018). https://doi.org/10.3389/fspas.2018.00040. arXiv:1809.06923 [astro-ph.CO]

    Article  ADS  Google Scholar 

  36. G. Corcella, Front. Phys. 7, 54 (2019). https://doi.org/10.3389/fphy.2019.00054. arXiv:1903.06574 [hep-ph]

    Article  Google Scholar 

  37. P.  Zyla et al. (Collaboration Particle Data Group), PTEP 2020, 083C01 (2020). https://doi.org/10.1093/ptep/ptaa104

  38. D. Buttazzo, G. Degrassi, P.P. Giardino, G.F. Giudice, F. Sala, A. Salvio, A. Strumia, JHEP 12, 089 (2013). https://doi.org/10.1007/JHEP12(2013)089. arXiv:1307.3536 [hep-ph]

    Article  ADS  Google Scholar 

  39. Y. Hamada, H. Kawai, Y. Nakanishi, K.-Y. Oda, Phys. Rev. D 95, 103524 (2017). https://doi.org/10.1103/PhysRevD.95.103524. arXiv:1610.05885

    Article  ADS  Google Scholar 

  40. Y.  Hamada, K.  Kawana, A.  Scherlis, (2020). arXiv:2007.04701 [hep-ph]

  41. Y.  Ema, K.  Mukaida, J.  van de Vis, (2020). arXiv:2008.01096 [hep-ph]

  42. F. Bezrukov, D. Gorbunov, C. Shepherd, A. Tokareva, Phys. Lett. B 795, 657 (2019). https://doi.org/10.1016/j.physletb.2019.06.064. arXiv:1904.04737 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  43. M.  He, R.  Jinno, K.  Kamada, A.A. Starobinsky, J.  Yokoyama (2020). arXiv:2007.10369 [hep-ph]

  44. F.  Bezrukov C.  Shepherd, (2020). arXiv:2007.10978 [hep-ph]

  45. A. Katz, J. Kopp, S. Sibiryakov, W. Xue, JCAP 1812, 005 (2018). https://doi.org/10.1088/1475-7516/2018/12/005. arXiv:1807.11495 [astro-ph.CO]

    Article  ADS  Google Scholar 

  46. S.  Jung, T.  Kim, (2019). arXiv:1908.00078 [astro-ph.CO]

  47. B.  Dasgupta, R.  Laha, A.  Ray, (2019). arXiv:1912.01014 [hep-ph]

  48. J.M. Ezquiaga, J. Garcia-Bellido, E. Ruiz Morales, Phys. Lett. B 776, 345 (2018). https://doi.org/10.1016/j.physletb.2017.11.039. arXiv:1705.04861

    Article  ADS  Google Scholar 

  49. K. Kannike, L. Marzola, M. Raidal, H. Veermäe, JCAP 1709, 020 (2017). https://doi.org/10.1088/1475-7516/2017/09/020. arXiv:1705.06225 [astro-ph.CO]

    Article  ADS  Google Scholar 

  50. C. Germani, T. Prokopec, Phys. Dark Univ. 18, 6 (2017). https://doi.org/10.1016/j.dark.2017.09.001. arXiv:1706.04226 [astro-ph.CO]

    Article  Google Scholar 

  51. F. Bezrukov, M. Pauly, J. Rubio, JCAP 1802, 040 (2018). https://doi.org/10.1088/1475-7516/2018/02/040. arXiv:1706.05007 [hep-ph]

    Article  ADS  Google Scholar 

  52. H. Motohashi, Phys. Rev. D 96, 063503 (2017). https://doi.org/10.1103/PhysRevD.96.063503. arXiv:1706.06784 [astro-ph.CO]

    Article  ADS  Google Scholar 

  53. I. Masina, Phys. Rev. D 98, 043536 (2018). https://doi.org/10.1103/PhysRevD.98.043536. arXiv:1805.02160 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  54. M.  Drees Y.  Xu, (2019). arXiv:1905.13581 [hep-ph]

  55. D.Y. Cheong, S.M. Lee, S.C. Park, (2019). arXiv:1912.12032 [hep-ph]

  56. A.M. Green, A.R. Liddle, K.A. Malik, M. Sasaki, Phys. Rev. D 70, 041502 (2004). https://doi.org/10.1103/PhysRevD.70.041502. arXiv:astro-ph/0403181

    Article  ADS  Google Scholar 

  57. T.  Harada, C.-M. Yoo, K.  Kohri,Phys. Rev. D 88, 084051 (2013) [Erratum: Phys. Rev.D 89, no. 2, 029903 (2014)]. https://doi.org/10.1103/PhysRevD.88.084051, 10.1103/PhysRevD.89.029903. arXiv:1309.4201 [astro-ph.CO]

  58. I. Musco, Phys. Rev. D 100, 123524 (2019). https://doi.org/10.1103/PhysRevD.100.123524. arXiv:1809.02127 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  59. B.J. Carr, Astrophys. J. 201, 1 (1975). https://doi.org/10.1086/153853

    Article  ADS  Google Scholar 

  60. B.J. Carr, K. Kohri, Y. Sendouda, J. Yokoyama, Phys. Rev. D 81, 104019 (2010). https://doi.org/10.1103/PhysRevD.81.104019. arXiv:0912.5297 [astro-ph.CO]

    Article  ADS  Google Scholar 

  61. S. Young, C.T. Byrnes, M. Sasaki, JCAP 1407, 045 (2014). https://doi.org/10.1088/1475-7516/2014/07/045. arXiv:1405.7023 [gr-qc]

    Article  ADS  Google Scholar 

  62. A. Codello, R.K. Jain, Class. Quantum Gravity 33, 225006 (2016). https://doi.org/10.1088/0264-9381/33/22/225006. arXiv:1507.06308 [gr-qc]

    Article  ADS  Google Scholar 

  63. T. Markkanen, S. Nurmi, A. Rajantie, S. Stopyra, JHEP 06, 040 (2018). https://doi.org/10.1007/JHEP06(2018)040. arXiv:1804.02020 [hep-ph]

    Article  ADS  Google Scholar 

  64. A. De Simone, M.P. Hertzberg, F. Wilczek, Phys. Lett. B B678, 1 (2009). https://doi.org/10.1016/j.physletb.2009.05.054. arXiv:0812.4946 [hep-ph]

    Article  ADS  Google Scholar 

  65. Q.-G. Huang, JCAP 1402, 035 (2014). https://doi.org/10.1088/1475-7516/2014/02/035. arXiv:1309.3514

    Article  ADS  Google Scholar 

  66. L. Sebastiani, G. Cognola, R. Myrzakulov, S.D. Odintsov, S. Zerbini, Phys. Rev. D 89, 023518 (2014). https://doi.org/10.1103/PhysRevD.89.023518. arXiv:1311.0744 [gr-qc]

    Article  ADS  Google Scholar 

  67. K. Kamada, J. Yokoyama, Phys. Rev. D 90, 103520 (2014). https://doi.org/10.1103/PhysRevD.90.103520. arXiv:1405.6732

    Article  ADS  Google Scholar 

  68. M. Artymowski, Z. Lalak, M. Lewicki, JCAP 1506, 031 (2015). https://doi.org/10.1088/1475-7516/2015/06/031. arXiv:1412.8075

    Article  ADS  Google Scholar 

  69. D.Y. Cheong, H.M. Lee, S.C. Park, Phys. Lett. B 805, 135453 (2020). https://doi.org/10.1016/j.physletb.2020.135453. arXiv:2002.07981 [hep-ph]

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Kazunori Kohri, Misao Sasaki, Hyun Min Lee, Shi Pi, and Fedor Bezrukov for helpful discussions and Alexei Starobinski, Minxi He, Jun’ichi Yokoyama, Ryusuke Jinno, Kohei Kamada, Kin-ya Oda, and Mio Kubota for valuable collaborations. This work was supported by National Research Foundation grants funded by the Korean government (MSIT) (NRF-2018R1A4A1025334),(NRF-2019R1A2C1089334) (SCP) and (MOE) (NRF-2020R1A6A3A13076216) (SML). The work of SML is supported by the Hyundai Motor Chung Mong-Koo Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Chan Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheong, D.Y., Lee, S.M. & Park, S.C. Progress in Higgs inflation. J. Korean Phys. Soc. 78, 897–906 (2021). https://doi.org/10.1007/s40042-021-00086-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00086-2

Keywords

Navigation