Skip to main content
Log in

Sensitive Near-Field Slit Probe with High  Spatial Resolution for Passive Millimeter-Wave Microscopy

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

A novel type of near-field slit probe with high sensitivity and high spatial resolution is proposed. We tested the implementation of this in passive millimeter-wave microscopy at frequencies around 50 GHz. The slit probe comprises a standard rectangular waveguide incorporating a triple-screw tuner penetrating into the waveguide, followed by a four-section quarter-wave transformer, and a metal-coated silicon chip with a micro-slit aperture fabricated at the probe tip using a bulk micromachining technique. The probe allows the transmission of the thermal radiation collected at the probe aperture to the radiometric receiver used in passive millimeter-wave microscopy to be maximized, resulting in highly sensitive measurements. The system noise temperature of the radiometric receiver including the slit probe used in the passive measurements was found to be 1800 K, meaning that a temperature resolution of 0.18 K with the integration time set to 1 s was achieved. This system noise temperature is four times better than that when a tapered slit probe with no tuning circuit was used. Image acquisition with a spatial resolution of better than 100 μm was demonstrated over the temperature range from 210 to 310 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data and material that support the findings of this study are available from the corresponding author upon reasonable request.

Code Availability

Not applicable.

References

  1. D. M. Sheen, D. L. MacMakin, and T. E. Hall, Three-dimensional millimeter-wave imaging for concealed weapon detection, IEEE Trans. Microw. Theory Tech. 49, 1581 (2001).

    Article  Google Scholar 

  2. L. Yujiri, M. Shoucri, and P. Moffa, Passive millimeter-wave imaging, IEEE Microw. Magazine 4, 39 (2003).

    Article  Google Scholar 

  3. M. Alibakhshikenari, F. Babaeian, B. S. Virdee, S. Aïssa, L. Azpilicueta, C. H. See, A. A. Althuwayb, I. Huynen, R. A. Abd-Alhameed, F. Falcone, and E. Limiti, A Comprehensive survey on “various decoupling mechanisms with focus on metamaterial and metasurface principles applicable to SAR and MIMO antenna systems”, IEEE Access, 8, 192965 (2020).

    Article  Google Scholar 

  4. M. Alibakhshikenari, B. S. Virdee, A. A. Althuwayb, S. Aïssa, C. H. See, R. A. Abd-Alhameed, F. Falcone, and E. Limiti, Study on on-chip antenna design based on metamaterial-inspired and substrate-integrated waveguide properties for millimetre-wave and THz integrated-circuit applications, J. Infrared, Millim., THz Waves 42, 17 (2020).

    Article  Google Scholar 

  5. M. Alibakhshikenari, B. S. Virdee, L. Azpilicueta, M. Nsaer-Moghadasi, M. O. Akinsolu, C. H. See, B. Liu, R. A. Abd-Alhameed, F. Falcone, I. Huynen, T. A. Denidni, and E. Limiti, A comprehensive survey of “metamaterial transmission-line based antennas: design, challenges, and applications”, IEEE Access, 8, 144778 (2020).

    Article  Google Scholar 

  6. M. Alibakhshikenari, B. S. Virdee, M. Khalily, C. H. See, R. A. Abd-Alhameed, F. Falcone, T. A. Denidni, and E. Limiti, High-gain on-chip antenna design on silicon layer with aperture excitation for terahertz applications", IEEE Antennas Wirel. Propag. Lett. 19, 1576 (2020).

  7. M. Alibakhshikenari, B. S. Virdee, C. H. See, P. Shukla, S. Salekzamankhani, R. A. Abd-Alhameed, F. Falcone, and E. Limiti, Study on improvement of the performance parameters of a novel 0.41-0.47 THz on-chip antenna based on metasurface concept realized on 50μm GaAs-layer", Sci. Rep. 10 11034 (2020).

    Article  Google Scholar 

  8. M. Alibakhshikenari, B. S. Virdee, C. H. See, R. A. Abd-Alhameed, F. Falcone, and E. Limiti, High-gain metasurface in polyimide on-chip antenna based on CRLH-TL for sub terahertz integrated circuits, Sci. Rep. 10, 4298 (2020).

    Article  Google Scholar 

  9. M. Alibakhshikenari, B. S. Virdee, M. Khalily, P. Shukla, C. H. See, R. A. Abd-Alhameed, F. Falcone, and E. Limiti, Beam-scanning leaky-wave antenna based on CRLH-metamaterial for millimeter-wave applications”, IET Microwaves Antennas Propag. 13, 1129 (2019).

    Article  Google Scholar 

  10. B. T. Rosner and D. W. van der Weide, High-frequency near-field microscopy, Rev. Sci. Instrum. 73, 2505 (2002).

    Article  Google Scholar 

  11. T. Nozokido, M. Noto, and T. Murai, Passive millimeter-wave microscopy, IEEE Microw. Wireless Compon. Lett. 19, 638 (2009).

    Article  Google Scholar 

  12. S. Sade, L. Nagli, and A. Katzir, Scanning near field infrared radiometry for thermal imaging of infrared emitters with subwavelength resolution, Appl. Phys. Lett. 87, 101109 (2005).

  13. Y. Kajihara, K. Kosaka, and S. Komiyama, A sensitive near-field microscope for thermal radiation, Rev. Sci. Instrum. 81, 033706 (2010).

    Article  Google Scholar 

  14. T. Nozokido, M. Ishino, H. Kudo, and J. Bae, Near-field imaging of thermal radiation at low temperatures by passive millimeter-wave microscopy, Rev. Sci. Instrum. 84, 036103 (2013).

    Article  Google Scholar 

  15. T. Nozokido, J. Bae, and K. Mizuno, Scanning near-field millimeter-wave microscopy using a metal slit as a scanning probe, IEEE Trans. Microw. Theory Tech. 49, 491 (2001).

    Article  Google Scholar 

  16. T. Nozokido, M. Ishino, R. Seto, and J. Bae, Contrast analysis of near-field scanning microscopy using a metal slit probe at millimeter wavelengths, J. Appl. Phys. 118, 114905 (2015).

    Article  Google Scholar 

  17. R. E. Collin, Foundations for Microwave Engineering (2nd ed.) (IEEE, New York, 1992) ch. 5.

    Google Scholar 

  18. K. Suetake and S. Hayashi, Microwave Circuits (Ohmsha, Tokyo, 1958) ch. 1. [in Japanese]

    Google Scholar 

  19. T. Nozokido, N. Miyasaka, and J. Bae, Near-field slit probe incorporating a micromachined silicon chip for millimeter-wave microscopy, Microw. Opt. Technol. Lett. 53, 660 (2011).

    Article  Google Scholar 

  20. F. T. Ulaby, R. K. Moore and A. K. Fung, Microwave remote sensing: Active and passive. Vol. 1 - Microwave remote sensing fundamentals and radiometry. (Artech House, Massachusetts, 1981), ch. 6.

    Google Scholar 

  21. A. C. Kak and M. Slaney, Principles of computerized tomographic imaging (IEEE, New York, 1988) ch. 3.

    MATH  Google Scholar 

  22. M. Ishino, A. Kishigami, H. Kudo, J. Bae, and T. Nozokido, Observation of protein thermodynamics in ice by passive millimeter-wave microscopy, J. Infrared, Millim., THz Waves 40, 585 (2019).

    Article  Google Scholar 

  23. T. Nozokido, J. Bae, and K. Mizuno, Visualization of photoexcited free carriers by scanning near-field millimeter-wave microscopy, Appl. Phys. Lett. 77, 148 (2000).

    Article  Google Scholar 

  24. J. Bae, T. Okamoto, T. Fijii, K. Mizno, and T. Nozokido, Experimental demonstration for scanning near-field optical microscopy using a metal micro-slit probe at millimeter wavelengths, Appl. Phys. Lett. 71, 3581 (1997).

    Article  Google Scholar 

  25. T. Nozokido, R. Iibuchi, H. Kudo, J. Bae, and K. Mizuno, Millimeter-wave scanning near-field anisotropy microscopy, Rev. Sci. Instrum. 76, 033702 (2005).

    Article  Google Scholar 

  26. M. Golosovsky and D. Davidov, Novel millimeter-wave near-field resistivity microscope, Appl. Phys. Lett. 68, 1579 (1996).

    Article  Google Scholar 

  27. M. Golosovsky, A. Galkin, and D. Davidov, High-spatial resolution resistivity mapping of large-area YBCO files by a near-field millimeter-wave microscope, IEEE Trans. Microw. Theory Tech. 44, 1390 (1996).

    Article  Google Scholar 

  28. A. F. Lann, M. Golosovsky, D. Davidov, and A. Frenkel, Combined millimeter-wave near-field microscope and capacitance distance control for the quantitative mapping of sheet resistance of conducting layers, Appl. Phys. Lett. 73, 2832 (1998).

    Article  Google Scholar 

  29. M. M. Awad and R. A. Cheville, Transmission terahertz waveguide-based imaging below the diffraction limit, Appl. Phys. Lett. 86, 221107 (2005).

    Article  Google Scholar 

  30. J. Liu, R. Mendis, D. M. Mittleman, and N. Sakoda, A tapered parallel-plate-waveguide probe for THz near-field reflection imaging, Appl. Phys. Lett. 100, 031101 (2012).

    Article  Google Scholar 

  31. K. Haddadi and T. Lasri, 60-GHz near-field six-port microscope using a scanning slit probe for subsurface sensing, IEEE Sens. J. 12, 2575 (2012).

    Article  Google Scholar 

  32. T. Nozokido, T. Ohbayashi, J. Bae, and K. Mizuno, A resonant slit-type probe for millimeter-wave scanning near-field microscopy, IEICE Trans. Electron. E87-C, 2158 (2004)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by JSPS KAKENHI Grant No. 18H01450.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuo Nozokido.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishino, M., Nakamura, Si. & Nozokido, T. Sensitive Near-Field Slit Probe with High  Spatial Resolution for Passive Millimeter-Wave Microscopy. J Infrared Milli Terahz Waves 42, 416–425 (2021). https://doi.org/10.1007/s10762-021-00777-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-021-00777-8

Keywords

Navigation