Skip to main content
Log in

Concentration of Black Carbon in the Near-Surface Atmosphere in the Pechora-Ilych Natural Reserve: Measurements and Merra-2 Reanalysis

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The concentration of black carbon (BC), measured in near-surface air on the territory of the Pechora-Ilych State Natural Biosphere Reserve (PISNBR) on the western side of the Northern Ural Mountains, far from sources, is presented for two years (December 2017–November 2019). The temporal variations in BC concentration throughout a year and the location of its main sources are analyzed. The average values for two cold and two warm half-years were 128 and 62 ng/m3, respectively. The BC concentration in near-surface atmosphere was compared with MERRA-2 reanalysis data. On a monthly scale, the anomalous increase in BC concentration during short-term smoke aerosol transport across the observation area is more clearly revealed from the reanalysis data, rather than by values measured at a single point. Daily monitoring allows us to detect the specific dates of such situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Alekseev, G.V., Arctic measurement of the global warming, Led Sneg, 2014, vol. 54, no 2, pp. 53–68.

    Google Scholar 

  2. AMAP Assessment 2015: Black Carbon and Ozone as Arctic Climate Forcers, Oslo: AMAP, 2015.

  3. Barrie, L.A., Arctic air pollution: an overview of current knowledge, Atmos. Environ., 1986, vol. 20, no. 4, pp. 643–663.

    Article  Google Scholar 

  4. Benedetti, A., Morsette, J.J., Boucher, O., Dethof, A., Engelen, R.J., Fisher, M., Flentje, H., Huneeus, N., Jones, L., Kaiser, J.W., Kinne, S., Mangold, A., Razinger, M., Simmons, A.J., and Suttie, M., Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 2. Data assimilation, J. Geophys. Res., 2009, vol. 114, paper ID D13205. https://doi.org/10.1029/2008JD011115

  5. Bond, T.C., Doherty, S.J., Fahey, D.W., Forster, P.M., Berntsen, T., DeAngelo, B.J., Flanner, M.G., Ghan, S., Karcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P.K., Sarofim, M.C., Schultz, M.G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S.K., Hopke, P.K., Jacobson, M.Z., Kaiser, J.W., Klimont, Z., Lohmann, U., Schwarz, J.P., Shindell, D., Storelvmo, T., Warren, S.G., and Zender, C.S., Bounding the role of black carbon in the climate system: a scientific assessment, J. Geophys. Res.: Atmos., 2013, vol. 118, no. 11, pp. 5380–5552.

    Article  Google Scholar 

  6. Climate Change 2014: Synthesis Rep. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Pachauri, R.K., and Meyer, L.A., Eds., Geneva: IPCC, 2014.

    Google Scholar 

  7. Gelaro, R., McCarty, W., Suarez, M.J., Todling, R., Molod, A., Takacs, L., Randles, C.A., Darmenov, A., Bosilovich, M.G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., C-onaty, A., da Silva, A.M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J.E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S.D., Sienkiewicz, M., and Zhao, B., The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), J. Clim., 2017, vol. 30, no. 14, pp. 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1

    Article  Google Scholar 

  8. Buchard V., Randles, C.A., da Silva, A.M., Darmenov, A., Colarco, P.R., Govindaraju, R., Ferrare, R., Hair, J., Beyersdorf, A.J., Ziemba, L.D., and Yu, H., The MERRA-2 aerosol reanalysis, 1980 onward. part II: Evaluation and case studies, J. Clim., 2017, vol. 30, no. 17, pp. 6851–6872. https://doi.org/10.1175/JCLI-D-16-0613.1

    Article  Google Scholar 

  9. Hansen, A.D.A., Rosen, H., and Novakov, T., The aethalometer – an instrument for real-time measurement of optical absorption by aerosol particles, Sci. Total. Environ., 1984, vol. 36, no. 1, pp. 191–196.

    Article  Google Scholar 

  10. Kopeikin, V.M., Soot aerosol in the Moscow air, Izv. Akad. Nauk, Fiz. Atmos. Okeana, 1998, vol. 34, no. 1, pp. 104–110.

    Google Scholar 

  11. Kopeikin, V.M., Emilenko A.S., Isakov A.A., Loskutova O.V., and Ponomareva T.Ya. Variability of soot and fine aerosol in the Moscow region in 2014–2016, Atmos. Oceanic Opt., 2018, vol. 31, pp. 243–249.

    Article  Google Scholar 

  12. Kopeikin, V.M., Repina, I.A., Grechko, E.I., and Ogorodnikov, B.I., Measurements of soot aerosol content in the near-water atmospheric layer in the Southern and Northern hemispheres, Atmos. Oceanic Opt., 2010, vol. 23, no. 6, pp. 500–507.

    Article  Google Scholar 

  13. Makshtas, A.P., Uttal, T., Laurilla, T., and Paramonova, N.A., Tiksi hydrometeorological observatory (five-year anniversary), Probl. Arktiki Antarktiki, 2015, no. 2 (104), pp. 5–12.

  14. Mikhailov, E.F., Mironova, S., Mironov, G., Vlasenko, S., Panov, A., Chi, X., Walter, D., Carbone, S., Artaxo, P., Heimann, M., Lavric, J., Pöschl, U., and Andreae, M.O., Long-term measurements (2010–2014) of carbonaceous aerosol and carbon monoxide at the Zotino tall tower observatory (ZOTTO) in Central Siberia, Atmos. Chem. Phys., 2017, vol. 17, no. 24, pp. 14365–14392.

    Article  Google Scholar 

  15. Randles, C.A., Da Silva, A.M., Buchard, V., Colarco, P.R., Darmenov, A., Govindaraju, R., Smirnov, A., Holben, B., Ferrare, R., Hair, J., Shinozuka, Y., and F-lynn, C.J., The MERRA-2 aerosol reanalysis, 1980 onward, part I: system description and data assimilation evaluation, J. Clim., 2017, vol. 30, no. 17, pp. 6823–6850. https://doi.org/10.1175/JCLI-D-16-0609.1

    Article  Google Scholar 

  16. Sakerin, S.M., Golobokova, L.P., Kabanov, D.M., Kalashnikova, D.A., Kozlov, V.S., Kruglinsky, I.A., Makarov, V.I., Makshtas, A.P., Popova, S.A., Radionov, V.F., Simonova, G.V., Tutrchinovich, Yu.S., Khodzher, T.V., Khuriganowa, O.I., Chankina, O.V., and Chernov, D.G., Measurements of physicochemical characteristics of atmospheric aerosol at research station Ice Base Cape Baranov in 2018, Atmos. Oceanic Opt., 2019, vol. 32, no. 5, pp. 511–520.

    Article  Google Scholar 

  17. Sharma, S., Andrews, E., Barrie, L.A., Ogren, J.A., and Lavoue, D., Variations and sources of the equivalent black carbon in the high Arctic revealed by long-term observations at Alert and Barrow: 1989–2003, J. Geophys. Res., 2006, vol. 111, p. D14208.

    Article  Google Scholar 

  18. Shevchenko, V.P., Starodymova, D.P., Vinogradova, A.A., Lisitsyn, A.P., Makarov, V.N., Popova, S.A., Sivonen, V.V. and Sivonen, V.P., Elemental and organic carbon in atmospheric aerosols over the northwestern coast of Kandalaksha Bay of the White Sea, Dokl. Earth Sci., 2015, vol. 461, no. 1, pp. 242–246.

    Article  Google Scholar 

  19. Sitnov, S.A., Mokhov, I.I., and Gorchakov, G.I., The link between smoke blanketing of European Russia in summer 2016, Siberian wildfires and anomalies of large-scale atmospheric circulation, Dokl., Earth Sci., 2017, vol. 472, pp. 190–195.

    Article  Google Scholar 

  20. Tomasi, C., Kokhanovsky, A., Lupi, A., Ritter, C., Smirnov, A., O’Neill, N., Stone, R., Holben, B., Nyeki, S., Wehrli, C., Stohl, A., Mazzola, M., Lanconelli, C., Vitale, V., Stebel, K., Aaltonen, V., de Leeuw, G., Rodriguez, E., Herber, A.B., Radionov, V., Zielinski, T., Petelski, T., Sakerin, S., Kabanov, D., Xue, Y., Mei, L., Istomina, L., Wagener, R., McArthur, B., Sobolewski, P., Kivi, R., Courcoux, Y., Larouche, P., Broccardo, S., and Piketh, S., Aerosol remote sensing in polar regions, Earth-Sci. Rev., 2015, vol. 140, pp. 108–157.

    Article  Google Scholar 

  21. Vinogradova, A.A., Microelements in the Arctic aerosol composition (review), Izv. Ross. Akad. Nauk: Fiz. Atmos. Okeana, 1993, vol. 29, no. 4, pp. 437–456.

    Google Scholar 

  22. Vinogradova, A.A. and Ivanova, Yu.A., Transport of air masses and pollutants to the Russian Arctic islands (1986–2016): Long-term, interannual, and seasonal variations, Izv. Atmos. Ocean. Phys., 2018, vol. 54, no. 7, pp. 62–73. https://doi.org/10.1134/S0001433818070174

    Article  Google Scholar 

  23. Vinogradova, A.A. and Ivanova, Yu.A., Heavy metals in the atmosphere over the Northern coast of Eurasia: Interannual variations in winter and summer, Izv. Atmos. Ocean. Phys., 2017, vol. 53, no. 7, pp. 711–718. https://doi.org/10.1134/S000143381707009X

    Article  Google Scholar 

  24. Vinogradova, A.A., Kopeikin, V.M., Smirnov, N.S., Vasil’eva, A.V., and Ivanova, Yu.A., Black carbon in near-surface air in Pechora-Ilych Nature Reserve: Measurements and sources, Atmos. Oceanic Opt., 2019, vol. 32, pp. 521–527.

    Article  Google Scholar 

  25. Vinogradova, A.A. and Kotova, E.I., Pollution of Russian northern seas with heavy metals: Comparison of atmospheric flux and river flow, Izv., Atmos. Oceanic Phys., 2019, vol. 55, pp. 695–704. https://doi.org/10.1134/S0001433819070119

    Article  Google Scholar 

  26. Vinogradova, A.A. and Titkova, T.B., Air temperature and black carbon concentration in the surface atmosphere at Tiksi, Yakutia, Izv., Atmos. Oceanic Phys., 2019, vol. 55, pp. 1585–1591.

    Article  Google Scholar 

  27. Vinogradova, A.A., Titkova, T.B., and Ivanova, Yu.A., Episodes with anomalously high black carbon concentration in surface air in the region of Tiksi station, Yakutiya, Atmos. Oceanic Opt., 2018, vol. 32, no. 1, pp. 94–102.

    Article  Google Scholar 

  28. Vinogradova, A.A. and Vasileva, A.V., Model estimates of black carbon concentration in the surface air of the northern regions of Russia, Opt. Atmos. Okeana, 2017, vol. 30, no. 6, pp. 467–475.

    Google Scholar 

  29. Zhuravleva, T.B., Artyushina, A.V., Vinogradova, A.A., and Voronina, Yu.V., Black carbon in the surface air far from the emission sources: Comparison of measurement results and MERRA-2 reanalysis, Opt. Atmos. Okeana, 2020, vol. 33, no. 4 (375), pp. 250–260. https://doi.org/10.15372/AOO20200402

Download references

ACKNOWLEDGMENTS

We are grateful to the organizers of the NOAA Air Resources Laboratory and Giovanni NASA sites for the opportunity to quickly use the resources in the public domain.

Funding

The measurements that this study is based on were carried out with financial support from the Russian Foundation for Basic Research (grant no. 17-05-00245).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Vinogradova.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinogradova, A.A., Kopeikin, V.M., Vasileva, A.V. et al. Concentration of Black Carbon in the Near-Surface Atmosphere in the Pechora-Ilych Natural Reserve: Measurements and Merra-2 Reanalysis. Izv. Atmos. Ocean. Phys. 56, 1191–1201 (2020). https://doi.org/10.1134/S0001433820100084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820100084

Keywords:

Navigation