Skip to main content

Advertisement

Log in

CFD Simulation of CO2 Capture in a Microchannel by Aqueous Mixtures of MEA and [Bmim]BF4 Modified with TiO2 Nanoparticles

  • Nanoparticle-enhanced Ionic Liquids
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this research, a novel aqueous solvent, i.e., nanoparticle-enhanced ionic liquid (NEIL), is proposed for CO2 capture by mixing of MEA as the base fluid and [Bmim]BF4 ionic liquid and TiO2 nanoparticles as chemical additives. Then, the flow hydrodynamics, mass transfer characteristics, and CO2 absorption performance of the proposed solvent are investigated in a T-shaped microchannel structure by Computational Fluid Dynamics technique at steady-state condition. To present a detailed model, the Navier–Stokes and continuity equations are combined with a two-phase laminar flow module considering mass transfer between heterogeneous phases. Then, the effects of [Bmim]BF4 and TiO2 mass fraction on CO2 loading, bubble formation, and velocity profile are investigated at different gas and liquid holdups at ionic liquid fraction 0 % to 10% and nanoparticle fraction 0 to 0.1%. It concludes that the purification fraction reaches a maximum at TiO2 weight fraction 0.04% and applying solvent with high nanoparticle content decreases purification fraction. In general, the proposed solvent and the considered contactor present adequate performance to absorb CO2 from the gas mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

a :

Interfacial area (m2)

c :

Concentration (mol·m3)

D :

Diffusion coefficient (m2·s1)

d :

Nanoparticle diameter

E :

Enhancement factor

F :

Volume force vector (N·m3)

H :

Henry’s constant (Pa·m3·mol1)

I :

Gas–liquid interface

ILs :

Ionic liquids

k :

Reaction rate constant

k L :

Liquid side mass transfer coefficient (m·s1)

n :

Normal vector

p :

Pressure (Pa)

R :

Total mass transfer rate expression (mol·m3·s1)

Re :

Reynolds number

S :

Strain rate tensor

Sc :

Schmitt number

t :

Time (s)

u :

Velocity vector (m·s1)

w :

Mass fraction

x :

Channel length (m)

µ :

Dynamic viscosity (Pa·s1)

γ :

Reinitialization parameter (m·s1)

ε :

Interface controlling parameter (m)

ϕ :

Volume fraction

φ :

Volume concentration of nanoparticle

τ c :

Residence time (s)

τ f :

Viscous stress tensor (Pa)

ρ :

Density (kg·m3)

η :

Purification fraction

AMP:

Aminomethyl propanol

DEA:

Diethanolamine

MDEA:

Methyl diethanolamine

MEA:

Monoethanolamine

NEILs:

Nanoparticle-Enhanced Ionic liquids

NPs:

Nanoparticles

[Bmim]BF4 :

1-Butyl-3-methylimidazolium tetrafluoroborate

References

  1. S. Keskin, D. Kayrak-Talay, U. Akman, Ö. Hortaçsu, J Supercrit Fluids 43, 150 (2007)

    Article  Google Scholar 

  2. A.-L. Revelli, F. Mutelet, J.-N. Jaubert, J. Phys. Chem. B 114, 12908 (2010)

    Article  Google Scholar 

  3. J. Zhang, J. Sun, X. Zhang, Y. Zhao, S. Zhang, Greenh. Gases Sci. Technol. 1, 142 (2011)

    Article  Google Scholar 

  4. M.E. Boot-Handford, J.C. Abanades, E.J. Anthony, M.J. Blunt, S. Brandani, N. Mac Dowell, J.R. Fernández, M.-C. Ferrari, R. Gross, J.P. Hallett, Energy Environ. Sci. 7, 130 (2014)

    Article  Google Scholar 

  5. G. Cevasco, C. Chiappe, Green Chem. 16(5), 2375 (2014)

    Article  Google Scholar 

  6. R. Giernoth, Angew. Chem. Int. Ed. 49, 2834 (2010)

    Article  Google Scholar 

  7. Z.-Z. Yang, Y.-N. Zhao, L.-N. He, RSC Adv. 1, 545 (2011)

    Article  ADS  Google Scholar 

  8. M. Pishnamazi, A.T. Nakhjiri, A.S. Taleghani, A. Marjani, A. Heydarinasab, S. Shirazian, J. Mol. Liq. 314, 113635 (2020)

    Article  Google Scholar 

  9. M. Mofarahi, M.A. Makarem, P. Jowkar, B. Jafarian, Heat Transf. Asian Res. 45, 358 (2016)

    Article  Google Scholar 

  10. T. Wang, W. Yu, F. Liu, M. Fang, M. Farooq, Z. Luo, Ind. Eng. Chem. Res. 55, 7830 (2016)

    Article  Google Scholar 

  11. J.-Z. Jiang, L. Liu, B.-M. Sun, Int. J. Greenh. Gas Control 60, 51 (2017)

    Article  Google Scholar 

  12. A.A. Minea, Int. J. Thermophys. 41, 1 (2020)

    Article  Google Scholar 

  13. A. Joseph, P.R. Nair, S. Mathew, Int. J. Thermophys. 41, 1 (2020)

    Article  Google Scholar 

  14. L.-L. Zhang, J.-X. Wang, Y. Xiang, X.-F. Zeng, J.-F. Chen, Ind. Eng. Chem. Res. 50, 6957 (2011)

    Article  Google Scholar 

  15. M.R. Kiani, M.A. Makarem, M. Farsi, M.R. Rahimpour, Advances in Carbon Capture (Elsevier, Oxford, 2020), pp. 151–170

    Book  Google Scholar 

  16. J.-C. Charpentier, Advances in Chemical Engineering (Elsevier, New York, 1981), pp. 1–133

    Google Scholar 

  17. W. Ehrfeld, V. Hessel, H. Lowe, Microreactors—New Technology for Modern Chemistry (Wiley-VCH, New York, 2000).

    Book  Google Scholar 

  18. K.F. Jensen, Chem. Eng. Sci. 56, 293 (2001)

    Article  Google Scholar 

  19. G. Kolb, V. Hessel, Chem. Eng. J. 98, 1 (2004)

    Article  Google Scholar 

  20. M.W. Losey, M.A. Schmidt, K.F. Jensen, Ind. Eng. Chem. Res. 40, 2555 (2001)

    Article  Google Scholar 

  21. J. Yue, L. Luo, Y. Gonthier, G. Chen, Q. Yuan, Chem. Eng. Sci. 63, 4189 (2008)

    Article  Google Scholar 

  22. M. Makarem, M. Farsi, M. Rahimpour, Int. J. Hydrog. Energy (2020). https://doi.org/10.1016/j.ijhydene.2020.07.22

    Article  Google Scholar 

  23. R. Guo, C. Zhu, Y. Yin, T. Fu, Y. Ma, J. Ind. Eng. Chem. 75, 194 (2019)

    Article  Google Scholar 

  24. V.K. Bodla, R. Seerup, U. Krühne, J.M. Woodley, K.V. Gernaey, Chem. Eng. Technol. 36, 1017 (2013)

    Article  Google Scholar 

  25. N. Harries, J. Burns, D.A. Barrow, C. Ramshaw, Int. J. Heat Mass Transf. 46, 3313 (2003)

    Article  Google Scholar 

  26. R. Dong, D. Chu, Q, Sun, Z, Jin, (2020) The Canadian J. Chem. Eng. 98, 2648 (2020). https://doi.org/10.1002/cjce.23781

  27. S. Firuzi, R. Sadeghi, Microfluid. Nanofluid. 22, 109 (2018)

    Article  Google Scholar 

  28. P. Danckwerts, Chem. Eng. Sci. 34, 443 (1979)

    Article  Google Scholar 

  29. D. Camper, P. Scovazzo, C. Koval, R. Noble, Ind. Eng. Chem. Res. 43, 3049 (2004)

    Article  Google Scholar 

  30. B.-H. Lu, J.-J. Jin, L. Zhang, W. Li, Int. J. Greenh. Gas Control 11, 152 (2012)

    Article  Google Scholar 

  31. B. Lu, X. Wang, Y. Xia, N. Liu, S. Li, W. Li, Energy Fuels 27, 6002 (2013)

    Article  Google Scholar 

  32. P. Dehghan, A. Azari, R. Azin, J. Environ. Chem. Eng. 8, 103598 (2020)

    Article  Google Scholar 

  33. M.A. Makarem, A. Bakhtyari, M.R. Rahimpour, Heat Transf. Asian Res. 47, 347 (2018)

    Article  Google Scholar 

  34. M.B. Turgay, A.G. Yazıcıoğlu, Numer. Heat Transf. Part A Appl. 73, 332 (2018)

    Article  ADS  Google Scholar 

  35. G.G. Stokes, Trans. Camb. Philos. Soc. IX, 8 (1880)

    ADS  Google Scholar 

  36. COMSOL AB, www.comsol.com. Stockholm, Sweden

  37. H. Ganapathy, E. Al-Hajri, M. Ohadi, Chem. Eng. Sci. 101, 69 (2013)

    Article  Google Scholar 

  38. V. Linek, M. Kordač, M. Soni, Chem. Eng. Sci. 63, 5120 (2008)

    Article  Google Scholar 

  39. K.C. Ruthiya, J. van der Schaaf, B.F. Kuster, J.C. Schouten, Int. J. Chem. Reactor Eng. 4, A13 (2006)

    Article  Google Scholar 

  40. T.G. Amundsen, L.E. Øi, D.A. Eimer, J. Chem. Eng. Data 54, 3096 (2009)

    Article  Google Scholar 

  41. J. Li, H. Zhu, C. Peng, H. Liu, Chin. J. Chem. Eng. 27, 2994 (2019)

    Article  Google Scholar 

  42. Y. Yin, T. Fu, C. Zhu, R. Guo, Y. Ma, H. Li, Sep. Purif. Technol. 210, 541 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Farsi or M. R. Rahimpour.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Special Issue on Nanoparticle-enhanced Ionic Liquids.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarem, M.A., Kiani, M.R., Farsi, M. et al. CFD Simulation of CO2 Capture in a Microchannel by Aqueous Mixtures of MEA and [Bmim]BF4 Modified with TiO2 Nanoparticles. Int J Thermophys 42, 57 (2021). https://doi.org/10.1007/s10765-021-02812-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02812-1

Keywords

Navigation