Skip to main content
Log in

Lanthanides in the Soil: Routes of Entry, Content, Effect on Plants, and Genotoxicity (a Review)

  • DEGRADATION, REHABILITATION, AND CONSERVATION OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Lanthanides as a separate group of metals geochemically belong to rare earth elements (REEs). For a long time, they have not received proper attention of researchers, whose interest was focused on other harmful environmental pollutants. However, the importance of REEs for modern technologies along with significant gaps in the knowledge about their effects on living organisms has changed the situation. Thanks to the active interest of researchers, a fairly large body of data on REEs in various areas has been accumulated, including their chemical and physical properties, their potential in engineering and instrumentation, their content in various natural objects, effects on human health, and interaction with other living organisms at the cellular level. This review analyzes and generalizes the new information about REEs as a relevant ecological factor with a special focus on the sources of REEs, specific features in their behavior in the soil, the effects of their interaction with plants, their manifestation, and putative mechanisms at the cellular level. The economic importance of plants to humans as well as their role for the entire biosphere as primary producers and their ability to be among the first ecosystem components that respond to negative changes requires focusing on these issues. The purpose of this review is to emphasize the research aspects that need a deeper insight, in particular, the soil–plant interaction and the effect of REEs on plant cell division.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Yu. A. Balashov, Geochemistry of Rare-Earth Elements (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  2. D. V. Bol’shoi, “The use of europium for modeling and study of migration of heavy metals from polymer materials into the external environment,” Aktual’n. Probl. Transp. Med.., No. 2, 108–112 (2013).

  3. S. V. Bryanin and O. A. Sorokina, “Vertical distribution of rare-earth elements in soils of the southern taiga of the Upper Amur region formed on rocks of various compositions,” Tikhookean. Geol. 34 (3), 104–111 (2015).

    Google Scholar 

  4. A. P. Vinogradov, “Average contents of chemical elements in the main types of igneous rocks of the Earth’s crust,” Geokhimiya, No. 7, 555–571 (1962).

    Google Scholar 

  5. Yu. N. Vodyanitskii, “Geochemical fractionation of lanthanides in soils and rocks: a review of publications,” Eurasian Soil Sci. 45, 56–67 (2012).

    Article  Google Scholar 

  6. Yu. N. Vodyanitskii, “Soil lanthanides and their effect on plants,” Agrokhimiya, No. 4, 84–96 (2012).

    Google Scholar 

  7. Yu. N. Vodyanitskii, N. V. Kosareva, and A. T. Savichev, “Content of lanthanides (Y, La, Ce, Pr, Nd, Sm) and actinides (Th, U) in soils of the Khibiny-Lovozero province,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 65, 75–86 (2010).

    Google Scholar 

  8. Yu. N. Vodyanitskii and O. B. Rogova, “Biogeochemistry of lanthanides in soil,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 84, 101–118 (2016).

    Google Scholar 

  9. A. A. Volokh, A. V. Gorbunov, S. F. Gundorina, B. A. Revich, M. V. Frontas’eva, and Chen Sen Pal, Production of Phosphate Mineral Fertilizers as a Source of Environmental Pollution by Rare Earth Elements (Joint Institute for Nuclear Research, Dubna, 1989) [in Russian].

  10. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements (Elsevier, Amsterdam, 1997; Binom. Laboratoriya Znanii, Moscow, 2014) [in Russian].

  11. E. V. Dabakh, “Rare earth elements in soils of natural and technogenic landscapes of Kirov oblast,” Teor. Prikl. Ekol., No. 3, 56–67 (2016).

  12. C. A. Dmitrieva, F. V. Minibaeva, and L. Kh. Gordon, “Mitotic index of meristematic cells and root growth of pea Pisum sativum affected by modulators of the inositol cycle,” Tsitologiya 48 (6), 475–479 (2006).

    Google Scholar 

  13. V. V. Ivanov, Ecological Geochemistry of Elements: Handbook, Book 6: Rare f-Elements, Ed. by E. K. Kurenkov (Ekologiya, Moscow, 1997) [in Russian].

    Google Scholar 

  14. A. Kabata-Pendias and H. Pendias, Trace Elements in Soils and Plants (CRC Press, Boca Raton, FL, 1984; Mir, Moscow, 1989).

  15. E. N. Kablov, O. G. Ospennikova, and A. V. Vershkov, “Rare metals and rare-earth elements are the materials of modern and prospective high technologies,” Aviats. Mater. Tekhnol., No. 2, 3–10 (2013).

  16. N. M. Kozhevnikova, “Specific distribution of gross and mobile forms of cerium, neodymium, samarium in the profile of the gray forest soil of Transbaikalia,” Agrokhimiya, No. 6, 65–68 (2010).

    Google Scholar 

  17. N. M. Kozhevnikova, “Distribution of rare earth elements of the cerium subgroup (La, Ce, Nd, Sm) within the profile of the alluvial meadow soil of Transbaikalia and their accumulation by oat plants by the example of lanthanum,” Agrokhimiya, No. 10, 32–38 (2012).

    Google Scholar 

  18. V. A. Kritsman and V. V. Stantso, Encyclopedic Dictionary of Young Chemist (Pedagogika, Moscow, 1990) [in Russian].

    Google Scholar 

  19. Yu. B. Kudryashov, Radiation Biophysics: Ionizing Radiation, Ed. by V. K. Mazurik and M. F. Lomanov (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  20. E. P. Lisachenko, “Assessment of the radiological significance of rare-earth metals with natural radioactive isotopes,” Radiats. Gig. 2 (6), 44–46 (2013).

    Google Scholar 

  21. Yu. S. Malyutin and A. E. Samonov, Global Market of Rare-Earth Metals (Academy of Industrial Markets Conjuncture, Moscow, 2007), No. 12.

  22. N. V. Mayachkina and M. V. Chugunova, “Specific soil biotesting for the ecotoxicological assessment,” Vestn. Nizhegorod. Univ. im. N.I. Lobachevskogo, No. 1, 84–93 (2009).

    Google Scholar 

  23. A. V. Naumov, “Review of the world market of rare-earth metals,” Russ. J. Non-Ferrous Met. 49, 14–22 (2008).

    Google Scholar 

  24. L. V. Perelomov, Zh. S. Asainova, S. Yoshida, and I. V. Ivanov, “Concentrations of rare-earth elements in soils of the Prioksko-Terrasnyi state biospheric reserve,” Eurasian Soil Sci. 45, 983–994 (2012).

    Article  Google Scholar 

  25. I. L. Savel’eva, “The rare-earth metals industry of Russia: present status, resource conditions of development,” Geogr. Nat. Resour. 32, 65–71 (2011).

    Article  Google Scholar 

  26. G. N. Solovykh, L. V. Golinskaya, and E. A. Kanunikova, “Rare earth metals as one mutagenic factors,” Gig. Sanit., No. 3, 23–25 (2012).

  27. A. S. Abdel-Haleem, A. Sroor, S. M. El-Bahi, and E. Zohny, “Heavy metals and rare earth elements in phosphate fertilizer components using instrumental neutron activation analysis,” Appl. Radiat. Isot. 55 (4), 569–573 (2001). https://doi.org/10.1016/S0969-8043(01)00098-7

    Article  Google Scholar 

  28. M. Aceto, F. Bonello, D. Musso, C. Tsolakis, C. Cassino, and D. Osella, “Wine traceability with rare earth elements,” Beverages 4 (1), 23 (2018). https://doi.org/10.3390/beverages4010023

    Article  Google Scholar 

  29. M. Adeel, J. Y. Lee, M. Zain, M. Rizwan, A. Nawab, M. A. Ahmad, M. Shafiq, H. Yi, G. Jilani, R. Javed, R. Horton, Y. Rui, D. C. W. Tsang, and B. Xing, “Cryptic footprints of rare earth elements on natural resources and living organisms,” Environ. Int. 127, 785–800 (2019). https://doi.org/10.1016/j.envint.2019.03.022

    Article  Google Scholar 

  30. M. A. Alam, L. Zuga, and M. G. Pecht, “Economics of rare earth elements in ceramic capacitors,” Ceram. Int. 38 (8), 6091–6098 (2012). https://doi.org/10.1016/j.ceramint.2012.05.068

    Article  Google Scholar 

  31. K. Babu, M. Deepa, S. G. Shankar, and S. Rai, “Effect of nano-silver on cell division and mitotic chromosomes: a prefatory siren,” Internet J. Nanotechnol. 2, 2–5 (2008).

    Google Scholar 

  32. J. Bailey-Serres and R. Mittler, “The roles of reactive oxygen species in plant cells,” Plant Physiol. 141, 311 (2006). https://doi.org/10.1104/pp.104.900191

    Article  Google Scholar 

  33. C. A. Berger and E. R. Witkus, “A cytological study of c-mitosis in the polysomatic plant Spinacia oleracea, with comparative observations on Allium cepa,” Bull. Torrey Bot. Club 70 (5), 457–466 (1943). https://doi.org/10.2307/2481391

    Article  Google Scholar 

  34. H. L. Bohn, B. L. McNeal, and G. A. O’Connor, Soil Chemistry (Willey, New York, 2001).

    Google Scholar 

  35. R. C. Borges, L. M. Marques, C. F. Mahler, and A. V. B. Bernedo, “Determination of the concentration of Ce, La, Sm and Eu in a phosphogypsum stack, in Imbituba city, Santa Catarina, Brazil,” Eclética Quím. J. 43 (3), 37–44 (2018). https://doi.org/10.26850/1678-4618eqj.v43.3.2018.p37-44

  36. U. Borgmann, Y. Couillard, P. Doyle, and D. G. Dixon, “Toxicity of sixty-three metals and metalloids to Hyalella azteca at two levels of water hardness,” Environ. Toxicol. Chem. 24 (3), 641–652 (2005). https://doi.org/10.1897/04-177R.1

    Article  Google Scholar 

  37. P. H. Brown, A. H. Rathjen, R. D. Graham, and D. E. Tribe, “Rare earth elements in biological systems,” in Handbook on the Physics and Chemistry of Rare Earths (Elsevier, Amsterdam, 1990), Vol. 13, pp. 423–452.

    Google Scholar 

  38. X. Cao, Y. Chen, Z. Gu, and X. Wang, “Determination of trace rare earth elements in plant and soil samples by inductively coupled plasma-mass spectrometry,” Int. J. Environ. Anal. Chem. 76 (4), 295–309 (2000). https://doi.org/10.1080/03067310008034137

    Article  Google Scholar 

  39. S. B. Castor and J. B. Hedrick, “Rare earth elements,” in Industrial Minerals & Rocks—Commodities, Markets and Uses, 7th ed. (Society for Mining, Metallurgy, and Exploration, Englewood, CO, 2006), pp. 769–792.

    Google Scholar 

  40. B.-C. Chen, P.-C. Ho, and K.-W. Juang, “Alleviation effects of magnesium on copper toxicity and accumulation in grapevine roots evaluated with biotic ligand models,” Ecotoxicology 22 (1), 174–183 (2013). https://doi.org/10.1007/s10646-012-1015-z

    Article  Google Scholar 

  41. X.-A. Chen, Y.-E. Cheng, and Z. Rong, “Recent results from a study of thorium lung burdens and health effects among miners in China,” J. Radiol. Prot. 25 (4), 451 (2005). https://doi.org/10.1088/0952-4746/25/4/007

    Article  Google Scholar 

  42. D. T. Clarkson, “The effect of aluminum and some other trivalent metal cations on cell division in the root apices of Allium cepa,” Ann. Bot. 29 (2), 309–315 (1965). https://doi.org/10.1093/oxfordjournals.aob.a083953

    Article  Google Scholar 

  43. Critical Raw Materials for the EU. Report of the Ad-hoc Working Group on Defining Critical Raw Materials (European Commission, Brussels, 2010).

  44. L. d’Aquino, M. C. De Pinto, L. Nardi, M. Morgana, and F. Tommasi, “Effect of some light rare earth elements on seed germination, seedling growth and antioxidant metabolism in Triticum durum,” Chemosphere 75 (7), 900–905 (2009). https://doi.org/10.1016/j.chemosphere.2009.01.026

    Article  Google Scholar 

  45. C. De Oliveira, S. J. Ramos, J. O. Siqueira, V. Faquin, E. M. de Castro, D. C. Amaral, V. H. Techio, L. C. Coelho, P. H. P. de Silva, E. Schnug, and L. R. G. Guilherme, “Bioaccumulation and effects of lanthanum on growth and mitotic index in soybean plants,” Ecotoxicol. Environ. Saf. 122, 136–144 (2015). https://doi.org/10.1016/j.ecoenv.2015.07.020

    Article  Google Scholar 

  46. P. C. Dent, “Rare earth elements and permanent magnets,” J. Appl. Phys. 111, 07A721 (2012)). https://doi.org/10.1063/1.3676616

  47. E. Diatloff, F. W. Smith, and C. J. Asher, “Rare earth elements and plant growth: I. Effects of lanthanum and cerium on root elongation of corn and mungbean,” J. Plant Nutr. 18 (10), 1963–1976 (1995). https://doi.org/10.1080/01904169509365037

    Article  Google Scholar 

  48. Y. Ding, Z. Zhang, J. Liu, Z. Wang, P. Zhou, and Y. Zhao, “A new gadolinium-loaded liquid scintillator for reactor neutrino detection,” Nucl. Instrum. Methods Phys. Res., Sect. A 584 (1), 238–243 (2008). https://doi.org/10.1016/j.nima.2007.09.044

    Article  Google Scholar 

  49. H. El-Ramady, Ecotoxicology of Rare Earth Elements: Ecotoxicology of Rare Earth Elements within Soil and Plant Environments (VDM Verlag Dr. Müller, Saarbrücken, 2010).

    Google Scholar 

  50. S. V. Eliseeva and J.-C. G. Bünzli, “Lanthanide luminescence for functional materials and bio-sciences,” Chem. Soc. Rev. 39 (1), 189–227 (2010). https://doi.org/10.1039/B905604C

    Article  Google Scholar 

  51. E. S. Emmanuel, A. M. Ramachandran, A. Ravindran, M. Natesan, and S. Maruthamuthu, “Effect of some rare earth elements on dry matter partitioning, nodule formation and chlorophyll content in Arachis hypogaea L. plants,” Aust. J. Crop Sci. 4 (9), 670 (2010).

    Google Scholar 

  52. H. Fashui, W. Ling, and L. Chao, “Study of lanthanum on seed germination and growth of rice,” Biol. Trace Elem. Res. 94 (3), 273–286 (2003). https://doi.org/10.1385/BTER:94:3:273

    Article  Google Scholar 

  53. P. S. Fedotov, O. B. Rogova, R. Kh. Dzhenloda, and V. K. Karandashev, “Metal–organic complexes as a major sink for rare earth elements in soils,” Environ. Chem. 16 (5), 323–332 (2019). https://doi.org/10.1071/EN18275

    Article  Google Scholar 

  54. N. K. Foley, B. De Vivo, and R. Salminen, “Rare earth elements: the role of geology, exploration, and analytical geochemistry in ensuring diverse sources of supply and a globally sustainable resource,” J. Geochem. Explor. 133, 1–5 (2013). https://doi.org/10.1016/j.gexplo.2013.08.001

    Article  Google Scholar 

  55. D. J. Freeman and E. E. Daniel, “Calcium movement in vascular smooth muscle and its detection using lanthanum as a tool,” Can. J. Physiol. Pharmacol. 51 (12), 900–913 (1973). https://doi.org/10.1139/y73-139

    Article  Google Scholar 

  56. B. S. Gill and S. S. Sandhu, “Application of the Tradescantia micronucleus assay for the genetic evaluation of chemical mixtures in soil and aqueous media,” Mutat. Res., Fundam. Mol. Mech. Mutagen. 270 (1), 65–69 (1992). https://doi.org/10.1016/0027-5107(92)90102-8

    Article  Google Scholar 

  57. F. Goecke, C. G. Jerez, V. Zachleder, F. L. Figueroa, K. Bišová, T. Řezanka, and M. Vítová, “Use of lanthanides to alleviate the effects of metal ion-deficiency in Desmodesmus quadricauda (Sphaeropleales, Chlorophyta),” Front. Microbiol. 6, 1–12 (2015). https://doi.org/10.3389/fmicb.2015.00002

    Article  Google Scholar 

  58. A. Golev, M. Scott, P. D. Erskine, S. H. Ali, and G. R. Ballantyne, “Rare earths supply chains: current status, constraints and opportunities,” Resour. Policy 41 (1), 52–59 (2014). https://doi.org/10.1016/j.resourpol.2014.03.004

    Article  Google Scholar 

  59. B. Gong, E. He, H. Qiu, J. Li, J. Ji, L. Zhao, and X. Cao, “Phytotoxicity of individual and binary mixtures of rare earth elements (Y, La, and Ce) in relation to bioavailability,” Environ. Pollut. 246, 114–121 (2019). https://doi.org/10.1016/j.envpol.2018.11.106

    Article  Google Scholar 

  60. B. Gong, E. He, H. Qiu, J. Li, J. Ji, W. J. G. M. Peijnenburg, Y. Liu, L. Zhao, and X. Cao, “The cation competition and electrostatic theory are equally valid in quantifying the toxicity of trivalent rare earth ions (Y3+ and Ce3+) to Triticum aestivum,” Environ. Pollut. 250, 456–463 (2019). https://doi.org/10.1016/j.envpol.2019.04.075

    Article  Google Scholar 

  61. V. Gonzalez, D. A. Vignati, C. Leyval, and L. Giamberini, “Environmental fate and ecotoxicity of lanthanides: Are they a uniform group beyond chemistry?” Environ. Int. 71, 148–157 (2014). https://doi.org/10.1016/j.envint.2014.06.019

    Article  Google Scholar 

  62. A. V. Gorbunov, M. V. Frontasyeva, S. F. Gundorina, T. L. Onischenko, B. B. Maksjuta, and C. S. Pal, “Effect of agricultural use of phosphogypsum on trace elements in soils and vegetation,” Sci. Total Environ. 122 (3), 337–346 (1992). https://doi.org/10.1016/0048-9697(92)90051-S

    Article  Google Scholar 

  63. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements (Butterworth-Heinemann, Oxford, 1997).

    Google Scholar 

  64. W. Guo, R. Y. Fu, R. X. Zhao, W. J. Zhao, J. Y. Guo, and J. Zhang, “Distribution characteristic and current situation of soil rare earth contamination in the Bayan Obo mining area and Baotou tailing reservoir in Inner Mongolia,” Huan Jing Ke Xue 34 (5), 1895–1900 (2013).

    Google Scholar 

  65. T. J. Haley, “Pharmacology and toxicology of the rare earth elements,” J. Pharm. Sci. 54 (5), 663–670 (1965). https://doi.org/10.1002/jps.2600540502

    Article  Google Scholar 

  66. K. H. Harmet, “Rapid growth responses of Avena coleoptile segments to lanthanum and other cations,” Plant Physiol. 64 (6), 1094–1098 (1979). https://doi.org/10.1104/pp.64.6.1094

    Article  Google Scholar 

  67. G. B. Haxel, J. B. Hedrick, and G. J. Orris, Rare Earth Elements—Critical Resources for High Technology: U.S. Geological Survey Fact Sheet 087-02 (US Geological Survey, Reston, VA, 2002).

    Book  Google Scholar 

  68. X. He, “The mechanism behind lack-of-effect of lanthanum on seed germination of switchgrass,” PLoS One 14 (3), (2019).

  69. Y.-W. He and C.-S. Loh, “Cerium and lanthanum promote floral initiation and reproductive growth of Arabidopsis thaliana,” Plant Sci. 159 (1), 117–124 (2000). https://doi.org/10.1016/S0168-9452(00)00338-1

    Article  Google Scholar 

  70. H. Herrmann, J. Nolde, S. Berger, and S. Heise, “Aquatic ecotoxicity of lanthanum—A review and an attempt to derive water and sediment quality criteria,” Ecotoxicol. Environ. Saf. 124, 213–238 (2016). https://doi.org/10.1016/j.ecoenv.2015.09.033

    Article  Google Scholar 

  71. F. Hong, L. Wang, X. Meng, Z. Wei, and G. Zhao, “The effect of cerium(III) on the chlorophyll formation in spinach,” Biol. Trace Elem. Res. 89 (3), 263–276 (2002). https://doi.org/10.1385/BTER:89:3:263

    Article  Google Scholar 

  72. X. Hu, Z. Ding, X. Wang, Y. Chen, and L. Dai, “Effects of lanthanum and cerium on the vegetable growth of wheat (Triticum aestivum L.) seedlings,” Bull. Environ. Contam. Toxicol. 69 (5), 727–733 (2002). https://doi.org/10.1007/s00128-002-0121-7

    Article  Google Scholar 

  73. Z. Hu, H. Richter, G. Sparovek, and E. Schnug, “Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: a review,” J. Plant Nutr. 27 (1), 183–220 (2004). https://doi.org/10.1081/PLN-120027555

    Article  Google Scholar 

  74. Z. Hu, S. Haneklaus, G. Sparovek, and E. Schnug, “Rare earth elements in soils,” Commun. Soil Sci. Plant Anal. 37 (9–10), 1381–1420 (2006). https://doi.org/10.1080/00103620600628680

    Article  Google Scholar 

  75. S. F. Huang, Z. Y. Li, M. L. Fu, F. F. Hu, H. J. Xu, and Y. Xie, “Detection of genotoxicity of 6 kinds of rare earth nitrates using orthogonal experimental design,” J. Agro-Environ. Sci. 1, 351–356 (2007).

    Google Scholar 

  76. A. M. Jha and A. C. Singh, “Clastogenicity of lanthanides—induction of micronuclei in root tips of Vicia faba,” Mutat. Res. Toxicol. 322 (3), 169–172 (1994). https://doi.org/10.1016/0165-1218(94)90003-5

    Article  Google Scholar 

  77. D. Joebstl, D. Bandoniene, T. Meisel, and S. Chatzistathis, “Identification of the geographical origin of pumpkin seed oil by the use of rare earth elements and discriminant analysis,” Food Chem. 123 (4), 1303–1309 (2010). https://doi.org/10.1016/j.foodchem.2010.06.009

    Article  Google Scholar 

  78. A. Kabata-Pendias, Trace Elements in Soils and Plants (CRC Press, Boca Raton, FL, 2010).

    Book  Google Scholar 

  79. R. R. Kastori, I. V. Maksimović, T. M. Zeremski-Škorić, and M. I. Putnik-Delić, “Rare earth elements: yttriu-m and higher plants,” Zb. Matice Srp. Prir. Nauke, No. 118, 87–98 (2010). https://doi.org/10.2298/ZMSPN1018087K

    Article  Google Scholar 

  80. I. Kostova, “Synthetic and natural coumarins as cytotoxic agents,” Curr. Med. Chem. Agents 5 (1), 29–46 (2005). https://doi.org/10.2174/1568011053352550

    Article  Google Scholar 

  81. M. Koyama, M. Shirakawa, J. Takada, Y. Katayama, and T. Matsubara, “Trace elements in land plants: concentration ranges and accumulators of rare earths, Ba, Ra, Mn, Fe, Co and heavy halogens,” J. Radioanal. Nucl. Chem. 112 (2), 489–506 (1987). https://doi.org/10.1007/BF02132381

    Article  Google Scholar 

  82. S. Kulaksız and M. Bau, “Rare earth elements in the Rhine River, Germany: first case of anthropogenic lanthanum as a dissolved microcontaminant in the hydrosphere,” Environ. Int. 37 (5), 973–979 (2011). https://doi.org/10.1016/j.envint.2011.02.018

    Article  Google Scholar 

  83. S. Kumar, “Effect of 2,4-D and isoproturon on chromosomal disturbances during mitotic division in root tip cells of Triticum aestivum L.,” Cytol. Genet. 44 (2), 79–87 (2010). https://doi.org/10.3103/S0095452710020027

    Article  Google Scholar 

  84. D. V. Ladonin, “Lanthanides in soils of the Cherepovets steel mill impact zone,” Eurasian Soil Sci. 50, 672–680 (2017). https://doi.org/10.1134/S1064229317060047

    Article  Google Scholar 

  85. S. Laurent, L. Vander Elst, and R. N. Muller, “Lanthanide complexes for magnetic resonance and optical molecular imaging,” Q. J. Nucl. Med. Mol. Imaging 53 (6), 586 (2009).

    Google Scholar 

  86. A. Lerat-Hardy, A. Coynel, L. Dutruch, C. Pereto, C. Bossy, T. Gil-Diaz, M.-J. Capdeville, G. Blanc, and J. Schäfer, “Rare earth element fluxes over 15 years into a major European Estuary (Garonne-Gironde, SW France): hospital effluents as a source of increasing gadolinium anomalies,” Sci. Total Environ. 656, 409–420 (2019). https://doi.org/10.1016/j.scitotenv.2018.11.343

    Article  Google Scholar 

  87. A. Levan, “Cytological reactions induced by inorganic salt solutions,” Nature 156 (3973), 751 (1945). https://doi.org/10.1038/156751a0

    Article  Google Scholar 

  88. S. I. Levy, The Rare Earths: Their Occurrence, Chemistry, and Technology (E. Arnold, London, 1915).

    Google Scholar 

  89. F. Li, X. Shan, T. Zhang, and S. Zhang, “Evaluation of plant availability of rare earth elements in soils by chemical fractionation and multiple regression analysis,” Environ. Pollut. 102 (2–3), 269–277 (1998). https://doi.org/10.1016/S0269-7491(98)00063-3

    Article  Google Scholar 

  90. J. Y. Li, A. L. Jiang, and W. Zhang, “Lanthanum prevents salt stress-induced programmed cell death in rice root tip cells by controlling early induction events,” J. Integr. Plant Biol. 49 (7), 1024–1031 (2007). https://doi.org/10.1111/j.1672-9072.2007.00458.x

    Article  Google Scholar 

  91. X. Li, Z. Chen, Z. Chen, and Y. Zhang, “A human health risk assessment of rare earth elements in soil and vegetables from a mining area in Fujian Province, Southeast China,” Chemosphere 93 (6), 1240–1246 (2013).https://doi.org/10.1016/j.chemosphere.2013.06.085

  92. T. Liang, S. Zhang, L. Wang, H. T. Kung, Y. Wang, A. Hu, and S. Ding, “Environmental biogeochemical behaviors of rare earth elements in soil-plant systems,” Environ. Geochem. Health 27 (4), 301–311 (2005). https://doi.org/10.1007/s10653-004-5734-9

  93. X.-J. Liang, H. Meng, Y. Wang, H. He, J. Meng, J. Lu, P. C. Wang, Y. Zhao, X. Gao, B. Sun, C. Chen, G. Xing, D. Shen, M. M. Gottesman, et al., “Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis,” Proc. Natl. Acad. Sci. U.S.A. 107 (16), 7449–7454 (2010). https://doi.org/10.1073/pnas.0909707107

    Article  Google Scholar 

  94. C. Liu, M. Yuan, W.-S. Liu, M.-N. Guo, H. Huot, Y.‑T. Tang, B. Laubie, M.-O. Simonnot, J. L. Morel, and R.-L. Qiu, “Element case studies: rare earth elements,” in Agromining: Farming for Metals. Extracting Unconventional Resources Using Plants (Springer-Verlag, New York, 2018), pp. 297–308. https://doi.org/10.1007/978-3-319-61899-9_19

    Book  Google Scholar 

  95. D. Liu, X. Wang, X. Chen, Y. Lin, Z. Chen, and H. Xu, “Effects of lanthanum on the change of calcium level in the root cells of rice,” Commun. Soil Sci. Plant Anal. 43 (15), 1994–2003 (2012). https://doi.org/10.1080/00103624.2012.693231

    Article  Google Scholar 

  96. D. Liu, X. Wang, X. Zhang, and Z. Gao, “Effects of lanthanum on growth and accumulation in roots of rice seedlings,” Plant, Soil Environ. 59 (5), 196–200 (2013). https://doi.org/10.17221/760/2012-PSE

    Article  Google Scholar 

  97. M. Liu and K. H. Hasenstein, “La3+ uptake and its effect on the cytoskeleton in root protoplasts of Zea mays L.,” Planta 220 (5), 658–666 (2005). https://doi.org/10.1007/s00425-004-1379-2

    Article  Google Scholar 

  98. Z. Liu, “The effects of rare earth elements on growth of crops,” in Proceedings of the International Symposium “New Results in the Research of Hardly Known Trace Elements and Their Role in Food Chain” (University of Horticulture and Food Industry, Budapest, 1988).

  99. Massari S. and Ruberti, M. “Rare earth elements as critical raw materials: Focus on international markets and future strategies,” Resour. Policy 38 (1), 36–43 (2013). https://doi.org/10.1016/j.resourpol.2012.07.001

    Article  Google Scholar 

  100. B. Meehan, K. Peverill, and A. Skroce, “The impact of bioavailable rare earth elements in Australia agricultural soils,” in Proceedings of the First National Workshop on Soil and Plant Analysis “Australia Soil and Plant Analysis” (Ballarat, Vic., 1993), pp. 36–41.

  101. V. Minganti, G. Drava, R. De Pellegrini, P. Modenesi, P. Malaspina, and P. Giordani, “Temporal trends (1981–2007) of trace and rare earth elements in the lichen Cetraria islandica (L.) Ach. from Italian herbaria,” Chemosphere 99, 180–185 (2014). https://doi.org/10.1016/j.chemosphere.2013.10.067

    Article  Google Scholar 

  102. G. Pagano, M. Guida, F. Tommasi, and R. Oral, “Health effects and toxicity mechanisms of rare earth elements—Knowledge gaps and research prospects,” Ecotoxicol. Environ. Saf. 115, 40–48 (2015). https://doi.org/10.1016/j.ecoenv.2015.01.030

    Article  Google Scholar 

  103. K. K. Panda, M. Lenka, and B. B. Panda, “Allium micronucleus (MNC) assay to assess bioavailability, bioconcentration and genotoxicity of mercury from solid waste deposits of a chloralkali plant, and antagonism of L-cysteine,” Sci. Total Environ. 79 (1), 25–36 (1989). https://doi.org/10.1016/0048-9697(89)90050-8

    Article  Google Scholar 

  104. X. Pang, D. Li, and A. Peng, “Application of rare-earth elements in the agriculture of China and its environmental behavior in soil,” Environ. Sci. Pollut. Res. 9 (2), 143–148 (2002). https://doi.org/10.1007/BF02987462

    Article  Google Scholar 

  105. L. Paoli, E. Fiorini, S. Munzi, S. Sorbo, A. Basile, and S. Loppi, “Uptake and acute toxicity of cerium in the lichen Xanthoria parietina,” Ecotoxicol. Environ. Saf. 104, 379–385 (2014). https://doi.org/10.1016/j.ecoenv.2014.02.028

    Article  Google Scholar 

  106. D. R. Parker, L. W. Zelazny, and T. B. Kinraide, “Aluminum speciation and phytotoxicity in dilute hydroxy-aluminum solutions,” Soil Sci. Soc. Am. J. 52 (2), 438–444 (1988). https://doi.org/10.2136/sssaj1988.03615995005200020025x

    Article  Google Scholar 

  107. B. G. Pickard, “Comparison of calcium and lanthanon Ions in the Avena-coleoptile growth test,” Planta 91 (4), 314–320 (1970). https://doi.org/10.1007/BF00387504

    Article  Google Scholar 

  108. R. Qin, C. Wang, D. Chen, L. O. Björn, and S. Li, “Copper-induced root growth inhibition of Allium cepa var. agrogarum L. involves disturbances in cell division and DNA damage,” Environ. Toxicol. Chem. 34 (5), 1045–1055 (2015). https://doi.org/10.1002/etc.2884

    Article  Google Scholar 

  109. A. Qu, C. R. Wang, and J. Bo, “Research on the cytotoxic and genotoxic effects of rare-earth element holmium to Vicia faba,” Heredity 26 (2), 195–201 (2004).

    Google Scholar 

  110. A. Rajeshwari, S. Kavitha, S. A. Alex, D. Kumar, A. Mukherjee, N. Chandrasekaran, and A. Mukherjee, “Cytotoxicity of aluminum oxide nanoparticles on Allium cepa root tip—effects of oxidative stress generation and biouptake,” Environ. Sci. Pollut. Res. 22 (14), 11057–11066 (2015). https://doi.org/10.1007/s11356-015-4355-4

    Article  Google Scholar 

  111. S. J. Ramos, G. S. Dinali, T. S. de Carvalho, L. C. Chaves, J. O. Siqueira, and L. R. Guilherme, “Rare earth elements in raw materials and products of the phosphate fertilizer industry in South America: content, signature, and crystalline phases,” J. Geochem. Explor. 168, 177–186 (2016). https://doi.org/10.1016/j.gexplo.2016.06.009

    Article  Google Scholar 

  112. S. J. Ramos, G. S. Dinali, C. Oliveira, G. C. Martins, C. G. Moreira, J. O. Siqueira, and L. R. Guilherme, “Rare earth elements in the soil environment,” Curr. Pollut. Rep. 2 (1), 28–50 (2016). https://doi.org/10.1007/s40726-016-0026-4

    Article  Google Scholar 

  113. K. Redling, PhD Thesis (Munich, 2006).

  114. A. Rezaee, PhD Thesis (Guelph, ON, 2016).

  115. A. W. Robards and M. E. Robb, “The entry of ions and molecules into roots: an investigation using electron-opaque tracers,” Planta 120 (1), 1–12 (1974). https://doi.org/10.1007/BF00388267

    Article  Google Scholar 

  116. M. Sadeghi, P. Petrosino, A. Ladenberger, S. Albanese, M. Andersson, G. Morris, A. Lima, and B. De Vivo, “Ce, La and Y concentrations in agricultural and grazing-land soils of Europe,” J. Geochem. Explor. 133, 202–213 (2013). https://doi.org/10.1016/j.gexplo.2012.12.007

    Article  Google Scholar 

  117. E. Shadrina, Y. Vol’pert, V. Soldatova, N. Y. Alekseeva, and T. Pudova, “Evaluation of environmental conditions in two cities of east Siberia using bio-indication methods (fluctuating asymmetry value and mutagenic activity of soils),” Int. J. Biol. 7 (1), 20–32 (2014). https://doi.org/10.5539/ijb.v7n1p20

    Article  Google Scholar 

  118. X. Shan, H. Wang, S. Zhang, H. Zhou, Y. Zheng, H. Yu, and B. Wen, “Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicropteris dichotoma,” Plant Sci. 165 (6), 1343–1353 (2003). https://doi.org/10.1016/S0168-9452(03)00361-3

    Article  Google Scholar 

  119. T. Shaymurat, J. Gu, C. Xu, Z. Yang, Q. Zhao, Yu. Liu, and Yi. Liu, “Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study,” Nanotoxicology 6 (3), 241–248 (2012). https://doi.org/10.3109/17435390.2011.570462

  120. S. Shishkova, T. L. Rost, and J. G. Dubrovsky, “Determinate root growth and meristem maintenance in angiosperms,” Ann. Bot. 101 (3), 319–340 (2007). https://doi.org/10.1093/aob/mcm251

  121. M. H. Siddiqui, S. Alamri, Q. D. Alsubaie, H. M. Ali, A. A. Ibrahim, and A. Alsadon, “Potential roles of melatonin and sulfur in alleviation of lanthanum toxicity in tomato seedlings,” Ecotoxicol. Environ. Saf. 180, 656–667 (2019). https://doi.org/10.1016/j.ecoenv.2019.05.043

    Article  Google Scholar 

  122. G. L. Silveira, M. G. F. Lima, G. Barreto dos Reis, M. J. Palmieri, and L. F. Andrade-Vieria, “Toxic effects of environmental pollutants: comparative investigation using Allium cepa L. and Lactuca sativa L.,” Chemosphere 178, 359–367 (2017). https://doi.org/10.1016/j.chemosphere.2017.03.048

    Article  Google Scholar 

  123. F. E. C. Sneller, D. F. Kalf, L. Weltje, and A. P. van Wezel, Maximum Permissible Concentrations and Negligible Concentrations for Rare Earth Elements, RIVM Report No. 601501 (National Institute of Public Health and Environmental Protection RIVM, Bilthoven, 2000).

  124. W. Song, F. Hong, and Z. Wan, “Effects of lanthanum element on the rooting of loquat plantlet in vitro,” Bio-l. Trace Elem. Res. 89 (3), 277–284 (2002). https://doi.org/10.1385/BTER:89:3:277

    Article  Google Scholar 

  125. J. Sun, H. Zhao, and Y. Wang, “Study on the contents of trace rare earth elements and their distribution in wheat and rice samples by RNAA,” J. Radioanal. Nucl. Chem. 179 (2), 377–383 (1994). https://doi.org/10.1007/BF02040174

    Article  Google Scholar 

  126. S. R. Taylor, “Abundance of chemical elements in the continental crust: a new table,” Geochim. Cosmochim. Acta 28 (8), 1273–1285 (1964). https://doi.org/10.1016/0016-7037(64)90129-2

    Article  Google Scholar 

  127. S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks (Blackwell, Oxford, 1985).

    Google Scholar 

  128. The Rare Earth Elements: Fundamentals and Applications, Ed. by D. A. Atwood (Wiley, Chichester, 2012).

    Google Scholar 

  129. N. E. Topp, Chemistry of the Rare-Earth Elements (Elsevier, New York, 1965).

    Google Scholar 

  130. G. Tyler, “Rare earth elements in soil and plant systems—A review,” Plant Soil 267 (1), 191–206 (2004). https://doi.org/10.1007/s11104-005-4888-2

    Article  Google Scholar 

  131. G. Tyler and T. Olsson, “Plant uptake of major and minor mineral elements as influenced by soil acidity and liming,” Plant Soil 230 (2), 307–321 (2001). https://doi.org/10.1023/A:1010314400976

    Article  Google Scholar 

  132. R. F. M. van Steveninck, M. E. van Steveninck, and D. Chescoe, “Intracellular binding of lanthanum in root tips of barley (Hordeum vulgare),” Protoplasma 90 (1–2), 89–97 (1976). https://doi.org/10.1007/BF01276481

    Article  Google Scholar 

  133. S. von Tucher and U. Schmidhalter, “Lanthanum uptake from soil and nutrient solution and its effects on plant growth,” J. Plant Nutr. Soil Sci. 168 (4), 574–580 (2005). https://doi.org/10.1002/jpln.200520506

    Article  Google Scholar 

  134. C. Wang, X. Lu, Y. Tian, T. Cheng, L. Hu, F. Chen, C. Jiang, and X. Wang, “Lanthanum resulted in unbalance of nutrient elements and disturbance of cell proliferation cycles in V. faba L. seedlings,” Biol. Trace Elem. Res. 143 (2), 1174–1181 (2011). https://doi.org/10.1007/s12011-010-8939-z

    Article  Google Scholar 

  135. C. Wang, K. Zhang, M. He, C. Jiang, L. Tian, Y. Tian, and X. Wang, “Mineral nutrient imbalance, DNA lesion and DNA-protein crosslink involved in growth retardation of Vicia faba L. seedlings exposed to lanthanum ions,” J. Environ. Sci. 24 (2), 214–220 (2012). https://doi.org/10.1016/S1001-0742(11)60760-2

    Article  Google Scholar 

  136. Y. Wang, P. Jiang, F. Guo, Z. Zhang, J. Sun, L. Xu, and G. Cao, “REE bound DNA in natural plant,” Sci. China, Ser. B: Chem. 42 (4), 357–362 (1999). https://doi.org/10.1007/BF02873964

    Article  Google Scholar 

  137. Y. Q. Wang, J. X. Sun, H. M. Chen, and F. Q. Guo, “Determination of the contents and distribution characteristics of REE in natural plants by NAA,” J. Radioanal. Nucl. Chem. 219 (1), 99–103 (1997). https://doi.org/10.1007/BF02040273

    Article  Google Scholar 

  138. Z. Wang, X. Zhang, and Y. Mu, “Effects of rare-earth fertilizers on the emission of nitrous oxide from agricultural soils in China,” Atmos. Environ. 42 (16), 3882–3887 (2008). https://doi.org/10.1016/j.atmosenv.2008.01.018

    Article  Google Scholar 

  139. M. S. Wason and J. Zhao, “Cerium oxide nanoparticles: potential applications for cancer and other diseases,” Am. J. Transl. Res. 5 (2), 126 (2013).

    Google Scholar 

  140. Z. Weifang, X. Süqin, W. Dongsen, S. Pingping, Y. Wenjiao, Z. Hui, and F. Jia, “Investigation on arteriosclerosis among population in a rare earth area in South China,” Biol. Trace Elem. Res. 59 (1–3), 93–98 (1997). https://doi.org/10.1007/BF02783234

    Article  Google Scholar 

  141. B. Wen, D. A. Yuan, X. Q. Shan, F. L. Li, and S. Z. Zhang, “The influence of rare earth element fertilizer application on the distribution and bioaccumulation of rare earth elements in plants under field conditions,” Chem. Speciation Bioavailability 13 (2), 39–48 (2001). https://doi.org/10.3184/095422901783726825

    Article  Google Scholar 

  142. W. Dong, X. Wang, X. Bian, A. Wang, J. Du, and Z. Tao, “Comparative study on sorption/desorption of radioeuropium on alumina, bentonite and red earth: effects of pH, ionic strength, fulvic acid, and iron oxides in red earth,” Appl. Radiat. Isot. 54 (4), 603–610 (2001). https://doi.org/10.1016/S0969-8043(00)00311-0

    Article  Google Scholar 

  143. S. A. Wood, “The aqueous geochemistry of the rare-earth elements and yttrium: 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters,” Chem. Geol. 82, 159–186 (1990).

    Article  Google Scholar 

  144. A. Wyttenbach, P. Schleppi, J. Bucher, V. Furrer, and L. Tobler, “The accumulation of the rare earth elements and of scandium in successive needle age classes of Norway spruce,” Biol. Trace Elem. Res. 41 (1–2), 13–29 (1994). https://doi.org/10.1007/BF02917214

    Article  Google Scholar 

  145. A. Wyttenbach, V. Furrer, P. Schleppi, and L. Tobler, “Rare earth elements in soil and in soil-grown plants,” Plant Soil 199 (2), 267–273 (1998). https://doi.org/10.1023/A:1004331826160

    Article  Google Scholar 

  146. A. Wyttenbach, L. Tobler, P. Schleppi, and V. Furrer, “Variation of the rare earth element concentrations in the soil, soil extract and in individual plants from the same site,” J. Radioanal. Nucl. Chem. 231 (1–2), 101–106 (1998). https://doi.org/10.1007/BF02388013

    Article  Google Scholar 

  147. C. M. Xu, B. Zhao, X. D. Wang, and Y. C. Wang, “Lanthanum relieves salinity-induced oxidative stress in Saussurea involucrata,” Biol. Plant 51 (3), 567–570 (2007). https://doi.org/10.1007/s10535-007-0124-7

    Article  Google Scholar 

  148. Q. M. Xu, Y. Z. Wang, H. Liu, and J. S. Cheng, “Physiological responses and chromosomal aberration in root tip cells of Allium sativum L. to cerium treatments,” Plant Soil 409 (1–2), 447–458 (2016). https://doi.org/10.1007/s11104-016-2978-y

    Article  Google Scholar 

  149. H. Yang, Z. Xu, R. Liu, and Z. Xiong, “Lanthanum reduces the cadmium accumulation by suppressing expression of transporter genes involved in cadmium uptake and translocation in wheat,” Plant Soil 441, 235–252 (2019). https://doi.org/10.1007/s11104-019-04112-y

    Article  Google Scholar 

  150. R. Yong and L. Zheng, “Adsorption and desorption of rare earth elements on soils and synthetic oxides,” Acta Sci. Circumstantiae 13, 288 (1993).

    Google Scholar 

  151. H. Zhang, J. Feng, W. Zhu, C. Liu, S. Xu, P. Shao, D. Wu, W. Yang, and J. Gu, “Chronic toxicity of rare-earth elements on human beings,” Biol. Trace Elem. Res. 73 (1), 1–17 (2000). https://doi.org/10.1385/BTER:73:1:1

    Article  Google Scholar 

  152. W. Zhang, C. Musante, J. C. White, P. Schwab, Q. Wang, S. D. Ebbs, and X. Ma, “Bioavailability of cerium oxide nanoparticles to Raphanus sativus L. in two soils,” Plant Physiol. Biochem. 110, 185–193 (2017). https://doi.org/10.1016/j.plaphy.2015.12.013

    Article  Google Scholar 

  153. H. Zhao, J. Hong, X. Yu, X. Zhao, L. Sheng, Y. Ze, X. Sang, S. Gui, Q. Sun, L. Wang, and F. Hong, “Oxidative stress in the kidney injury of mice following exposure to lanthanides trichloride,” Chemosphere 93 (6), 875–884 (2013). https://doi.org/10.1016/j.chemosphere.2013.05.034

    Article  Google Scholar 

  154. H. Zhao and Q. Yang, “The suitability of rare earth elements for geographical traceability of tea leaves,” J. Sci. Food Agric. 99 (14), 6509–6514 (2019). https://doi.org/10.1002/jsfa.9930

    Article  Google Scholar 

  155. Z. Wei, M. Yin, X. Zhang, F. Hong, V. Li, Y. Tao, G. Zhao, and C. Yan, “Rare earth elements in naturally grown fern Dicranopteris linearis in relation to their variation in soils in South-Jiangxi region (Southern China),” Environ. Pollut. 114 (3), 345–355 (2001). https://doi.org/10.1016/S0269-7491(00)00240-2

    Article  Google Scholar 

  156. W. Zhu, S. Xu, H. Zhang, P. Shao, D. Wu, W. Yang, and J. Feng, “Investigation on the intelligence quotient of children in the areas with high REE background (I)—REE bioeffects in the REE-high areas of southern Jiangxi Province,” Chin. Sci. Bull. 41 (23), 1977–1981 (1996).

    Article  Google Scholar 

  157. W. Zhu, S. Xu, P. Shao, H. Zhang, D. Wu, W. Yang, and J. Feng, “Bioelectrical activity of the central nervous system among populations in a rare earth element area,” Biol. Trace Elem. Res. 57 (1), 71–77 (1997). https://doi.org/10.1007/BF02803871

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research under project no. 18-316-00026 (sections “Entry, Accumulation, and Content of Lanthanides in Plants”, “The Effect of Lanthanides on Plants”, and “The Effect of Lanthanides on Plant Cell Division”) and research project no. 19-05-50016 (sections “Lanthanides: Representatives of Rare Earth Elements”, “The Content of Lanthanides in the Earth’s Crust, World Resources, and Fields of Application”, “The Properties of Lanthanides as a Specific Group of Elements”, and “Behavior of Lanthanides in Soil”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Kotelnikova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by G. Chirikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotelnikova, A.D., Rogova, O.B. & Stolbova, V.V. Lanthanides in the Soil: Routes of Entry, Content, Effect on Plants, and Genotoxicity (a Review). Eurasian Soil Sc. 54, 117–134 (2021). https://doi.org/10.1134/S1064229321010051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229321010051

Keywords:

Navigation