Skip to main content
Log in

Prokaryotic Component of Oil-Contaminated Oligotrophic Peat Soil under Different Levels of Mineral Nutrition: Biomass, Diversity, and Activity

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract—

Molecular biology techniques have been applied to study the diversity and biomass of metabolically active prokaryotic cells in an oil-contaminated oligotrophic peat soil at different levels of mineral nutrition. The share of metabolically active components in the peat samples is only about 10% of the entire prokaryotic community. The application of mineral fertilizer (N40P50K50) against the background of half-dose liming has led to a more than twofold increase in the biomass of bacterial and archaeal cells, an increase in the number of functional genes (bss and nifH) copies, and a significant decrease in the content of oil products in the peat of experimental variants. The application of mineral fertilizer against the background liming of oil-to contaminated soil induces changes in the phylogenetic structure and partial restoration of the metabolically active prokaryotic complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. O. Yu. Bogdanova, A. V. Golovchenko, L. V. Lysak, T. V. Glukhova, and D. G. Zvyagintsev, “Viability of bacteria in peatlands,” Eurasian Soil Sci. 47, 297–303 (2014). https://doi.org/10.1134/S1064229314020033

    Article  Google Scholar 

  2. T. G. Dobrovol’skaya, A. V. Golovchenko, A. V. Yakushev, E. N. Yurchenko, N. A. Manucharov, and I. Yu. Chernov, “Bacterial complexes of a high moor related to different elements of microrelief,” Eurasian Soil Sci. 50, 470–475 (2017). https://doi.org/10.1134/S1064229317040020

    Article  Google Scholar 

  3. P. A. Kozhevin, Microbial Populations in Nature (Moscow State University, Moscow, 1989) [in Russian].

    Google Scholar 

  4. N. A. Manucharova, N. A. Ksenofontova, T. D. Karimov, A. P. Vlasova, G. M. Zenova, and A. L. Stepanov, “Changes in the phylogenetic structure of the metabolically active prokaryotic soil complex induced by oil pollution,” Microbiology (Moscow) 89, 219–230 (2020). https://doi.org/10.1134/S0026261720020083

    Article  Google Scholar 

  5. Practical Manual on Soil Microbiology and Biochemistry, Ed. by D. G. Zvyagintsev (Moscow State University, Moscow, 1991) [in Russian].

    Google Scholar 

  6. T. A. Pankratov, S. E. Belova, and S. N. Dedysh, “Evaluation of the phylogenetic diversity of prokaryotic microorganisms i n Sphagnum peat bogs by means of fluorescence in situ hybridization (FISH),” Microbiology (Moscow) 74, 722–728 (2005). https://doi.org/10.1007/s11021-005-0130-8

    Article  Google Scholar 

  7. Practical Manual on Agrochemistry, Ed. by V. G. Mineev (Moscow State University, Moscow, 2001) [in Russian].

    Google Scholar 

  8. I. I. Tolpeshta, S. Ya. Trofimov, M. I. Erkenova, T. A. Sokolova, A. L. Stepanov, L. V. Lysak, and A. M. Lobanenkov, “Laboratory simulation of the successive aerobic and anaerobic degradation of oil products in oil-contaminated high-moor peat,” Eurasian Soil Sci. 48, 314–324 (2015).

    Article  Google Scholar 

  9. R. I. Amann W., Ludwig, and K. H. Schleifer, “Phylogenetic identification and in situ detection of individual microbial cells without cultivation,” Microbiol. Rev. 59 (1), 143–169 (1995). https://doi.org/10.1128/mmbr.59.1.143-169.1995

    Article  Google Scholar 

  10. T. O. Anokhina, O. V. Volkova, I. F. Puntus, A. E. Filonov, V. V. Kochetkov, and A. M. Boronin, “Plant growth-promoting Pseudomonas bearing catabolic plasmids: naphthalene degradation and effect on plants,” Process. Biochem. 41, 2417–2423 (2006). https://doi.org/10.1016/j.procbio.2006.06.026

    Article  Google Scholar 

  11. T. Biegert, G. Fuchs, and F. Heider, “Evidence that anaerobic oxidation of toluene in the denitrifying bacterium Thauera aromatica is initiated by formation of benzylsuccinate from toluene and fumarate,” Eur. J. Biochem. 238, 661–668 (1996). https://doi.org/10.1111/j.1432-1033.1996.0661w.x

    Article  Google Scholar 

  12. R. Boden, L. P. Hutt, and A. W. Rae, “Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov., transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the 'Proteobacteria', and four new families within the orders Nitrosomonadales and Rhodocyclales,” Int. J. Syst. Evol. Microbiol. 67, 1191–1205 (2017). https://doi.org/10.1099/ijsem.0.001927

    Article  Google Scholar 

  13. J. G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, N. Fierer, A. G. Peña, J. K. Goodrich, J. I. Gordon, G. A. Huttley, S. T. Kelley, D. Knights, J. E. Koenig, R. E. Ley, et al., “QIIME allows analysis of high-throughput community sequencing data,” Nat. Methods 7 (5), 335–340 (2010).

    Article  Google Scholar 

  14. N. Fierer, J. A. Jackson, R. Vilgalys, and R. B. Jackson, “Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays,” Appl. Environ. Microbiol. Rev. 71 (7), 4117–4120 (2005). https://doi.org/10.1128/AEM.71.7.4117-4120.2005

    Article  Google Scholar 

  15. H. Bürgmann, F. Widmer, W. von Sigler, and J. Zeyer, “New molecular screening tools for analysis of free-living diazotrophs in soil,” Appl. Environ. Microbiol. 70, 240–247 (2004). https://doi.org/10.1128/AEM.70.1.240-247.2004

    Article  Google Scholar 

  16. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (UN Food and Agriculture Organization, Rome, 2014).

    Google Scholar 

  17. A. L. Jones, G. D. Paynet, and M. Goodfellow, “Williamsia faeni sp. nov, an actinomycete isolated from a hay meadow,” Int. J. Syst. Evol. Microbiol. 60, 2548–2551 (2010). https://doi.org/10.1099/ijs.0.015826-0

    Article  Google Scholar 

  18. D. J. Lane, “16S/23S rRNA sequencing,” in Nucleic Acid Techniques in Bacterial Systematic, Ed. by E. Stackebrandt and M. Goodfellow (Wiley, Hoboken, NJ, 1991), pp. 115–175.

    Google Scholar 

  19. M. T. Madigan, J. M. Martinko, P. V. Dunlap, and D. P. Clark, Brock Biology of Microorganisms (Prentice-Hall, Englewood Cliffs, 2008).

    Google Scholar 

  20. V. Perry, PhD Thesis (Georgia State University, Atlanta, GA, 2014).

  21. Q. Wang, G. M. Garrity, J. M. Tiedje, and J. R. Cole, “Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy,” Appl. Environ. Microbiol. 73 (16), 5261–5267 (2007).

    Article  Google Scholar 

  22. C. Will, A. Thürmer, A. Wollherr, H. Nacke, N. Herold, M. Schrumpf, J. Gutknecht, T. Wubet, F. Buscot, and R. Daniel, “Horizon-specific bacterial community composition of German grassland soils, as revealed by pyrosequencing-based analysis of 16S rRNA genes,” Appl. Environ. Microbiol. 76 (20), 6751 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Manucharova.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

FINANCIAL SUPPORT

This study was supported by the Russian Foundation for Basic Research (project no. 19-29-05197-mk) and, partly, by the federal budget program “Productivity of Agroecosystems and Its Relationship with the Dynamics of Soil Fertility” (registration no. 116020350086-4).

Additional information

Translated by T. Chicheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manucharova, N.A., Ksenofontova, N.A., Belov, A.A. et al. Prokaryotic Component of Oil-Contaminated Oligotrophic Peat Soil under Different Levels of Mineral Nutrition: Biomass, Diversity, and Activity. Eurasian Soil Sc. 54, 89–97 (2021). https://doi.org/10.1134/S1064229321010105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229321010105

Keywords:

Navigation