Skip to main content
Log in

Frequent Fire Reduces the Magnitude of Positive Interactions Between an Invasive Grass and Soil Microbes in Temperate Forests

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Fire activity is increasing in many regions. Although increased fire activity is expected to promote plant invasion, over longer time periods, frequent fire can shift the nutrient status of ecosystems, which may alter interactions between invasive plants and soil microbial decomposers. Here, we applied a fire treatment to plots embedded in deciduous forests under regimes of either fire exclusion or frequent fire and invaded by the most widespread invasive grass in the eastern USA (Microstegium vimineum) to determine how frequent fire affects plant–soil interactions while controlling for time after fire. We predicted that frequent fire would increase microbial nitrogen (N) limitation, leading to lower Microstegium productivity and reduced soil carbon (C) and N loss. We found that Microstegium leaf, root, and microbial biomass C/N ratios were significantly wider under frequent fire than fire exclusion. Consistent with these patterns, dissolved organic N concentration was 22% lower and the activity of an exoenzyme targeting N acquisition was 59% higher under frequent fire, indicating that frequent fire increased microbial N limitation. Higher surface soil C and N and fire-induced increases in particulate soil organic matter N suggest that frequent fire in these grass-invaded forests enhanced microbial N limitation through the accumulation of microbially resistant pyrogenic N. A structural equation model confirmed that these changes were interrelated and associated with 87% lower Microstegium aboveground biomass and 85% higher fine root biomass. These findings provide new insights into how frequent fire impacts plant–soil microbial interactions and thus may feedback to plant invasion over longer time periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data Availability

The data are publicly available at: https://doi.org/10.13012/B2IDB-0742378_V1.

References

  • Allison SD, Vitousek PM. 2005. Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol Biochem 37:937–944.

    Article  CAS  Google Scholar 

  • Almendros G, Gonzalezvila FJ, Martin F. 1990. Fire-induced transformation of soil organic-matter from an oak forest-an experimental approach to the effects of fire on humic substances. Soil Sci 149:158–168.

    Article  CAS  Google Scholar 

  • Artz RRE, Reid E, Anderson IC, Campbell CD, Cairney JWG. 2009. Long term repeated prescribed burning increases evenness in the basidiomycete laccase gene pool in forest soils. FEMS Microbiol Ecol 67:397–410.

    Article  CAS  PubMed  Google Scholar 

  • Baer SG, Meyer CK, Bach EM, Klopf RP, Six J. 2010. Contrasting ecosystem recovery on two soil textures: implications for carbon mitigation and grassland conservation. Ecosphere 1: art5.

  • Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting Linear Mixed-Effects Models Using lme4. J Stat Softw 67:1–48.

    Article  Google Scholar 

  • Bennett JA, Klironomos J. 2019. Mechanisms of plant–soil feedback: interactions among biotic and abiotic drivers. New Phytol 222:91–96.

    Article  PubMed  Google Scholar 

  • Billings SA, Ziegler SE. 2008. Altered patterns of soil carbon substrate usage and heterotrophic respiration in a pine forest with elevated CO2 and N fertilization. Glob Chang Biol 14:1025–1036.

    Article  Google Scholar 

  • Binkley D, Richter D, David MB, Caldwell B. 1992. Soil chemistry in a loblolly longleaf pine forest with interval burning. Ecol Appl 2:157–164.

    Article  PubMed  Google Scholar 

  • Blumenthal DM. 2006. Interactions between resource availability and enemy release in plant invasion. Ecol Lett 9:887–895.

    Article  PubMed  Google Scholar 

  • Boerner REJ. 1982. Fire and nutrient cycling in temperate ecosystems. Bioscience 32:187–192.

    Article  Google Scholar 

  • Boerner REJ, Brinkman JA. 2003. Fire frequency and soil enzyme activity in southern Ohio oak–hickory forests. Appl Soil Ecol 23:137–146.

    Article  Google Scholar 

  • Boerner REJ, Giai C, Huang JJ, Miesel JR. 2008. Initial effects of fire and mechanical thinning on soil enzyme activity and nitrogen transformations in eight North American forest ecosystems. Soil Biol Biochem 40:3076–3085.

    Article  CAS  Google Scholar 

  • Boring LR, Hendricks JJ, Wilson CA, Mitchell RJ. 2004. Season of burn and nutrient losses in a longleaf pine ecosystem. International Journal of Wildland Fire 13:443–453.

    Article  Google Scholar 

  • Borken W, Matzner E. 2009. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob Chang Biol 15:808–824.

    Article  Google Scholar 

  • Bradford MA, Fierer N, Reynolds JF. 2008. Soil carbon stocks in experimental mesocosms are dependent on the rate of labile carbon, nitrogen and phosphorus inputs to soils. Funct Ecol 22:964–974.

    Article  Google Scholar 

  • Brooks ML, D’Antonio CM, Richardson DM, Grace JB, Keeley JE, DiTomaso JM, Hobbs RJ, Pellant M, Pyke D. 2004. Effects of invasive alien plants on fire regimes. Bioscience 54:677–688.

    Article  Google Scholar 

  • Butler OM, Lewis T, Rezaei Rashti M, Maunsell SC, Elser JJ, Chen C. 2019. The stoichiometric legacy of fire regime regulates the roles of micro-organisms and invertebrates in decomposition. Ecology 100:e02732.

    Article  PubMed  Google Scholar 

  • Butler OM, Lewis T, Rashti MR, Chen CR. 2020. Long-term fire regime modifies carbon and nutrient dynamics in decomposing Eucalyptus pilularis leaf litter. Frontiers in Forests and Global Change 3:22.

  • Cairney JWG, Bastias BA. 2007. Influences of fire on forest soil fungal communities this article is one of a selection of papers published in the special forum on towards sustainable forestry—the living soil: soil biodiversity and ecosystem function. Can J For Res 37:207–215.

    Article  Google Scholar 

  • Caldwell TG, Johnson DW, Miller WW, Qualls RG. 2002. Forest floor carbon and nitrogen losses due to prescription fire. Soil Sci Soc Am J 66:262–267.

    Article  CAS  Google Scholar 

  • Cambardella CA, Elliott ET. 1992. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Sci Soc Am J 56:777–783.

    Article  Google Scholar 

  • Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF. 2000. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81:2359–2365.

    Article  Google Scholar 

  • Certini G. 2005. Effects of fire on properties of forest soils: a review. Oecologia 143:1–10.

    Article  PubMed  Google Scholar 

  • Chapin FSI. 1980. The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260.

    Article  CAS  Google Scholar 

  • Chapin FSI, Matson PA, Mooney HA. 2012. Principles of terrestrial ecosystem ecology. Newyork: Springer.

    Google Scholar 

  • Cleveland CC, Liptzin D. 2007. C: N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85:235–252.

    Article  Google Scholar 

  • Coomes DA, Grubb PJ. 2000. Impacts of root competition in forests and woodlands: a theoretical framework and review of experiments. Ecol Monogr 70:171–207.

    Article  Google Scholar 

  • Craig ME, Fraterrigo JM. 2017. Plant-microbial competition for nitrogen increases microbial activities and carbon loss in invaded soils. Oecologia 184:583–596.

    Article  PubMed  Google Scholar 

  • Craig ME, Pearson SM, Fraterrigo JM. 2015. Grass invasion effects on forest soil carbon depend on landscape-level land use patterns. Ecology 96:2265–2279.

    Article  PubMed  Google Scholar 

  • Craig ME, Lovko N, Flory SL, Wright JP, Phillips RP. 2019. Impacts of an invasive grass on soil organic matter pools vary across a tree-mycorrhizal gradient. Biogeochemistry 144:149–164.

    Article  CAS  Google Scholar 

  • D’Antonio CM, Vitousek PM. 1992. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Ann Rev Ecol Syst 23:63–87.

    Article  Google Scholar 

  • Ehrenfeld JG. 2003. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523.

    Article  CAS  Google Scholar 

  • Ehrenfeld JG, Kourtev P, Huang WZ. 2001. Changes in soil functions following invasions of exotic understory plants in deciduous forests. Ecol Appl 11:1287–1300.

    Article  Google Scholar 

  • Ehrenfeld JG, Ravit B, Elgersma K. 2005. Feedback in the plant-soil system. Ann Rev Environ Res 30:75–115.

    Article  Google Scholar 

  • Eziz A, Yan Z, Tian D, Han W, Tang Z, Fang J. 2017. Drought effect on plant biomass allocation: a meta-analysis. Ecol Evol 7:11002–11010.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fairbrothers DE, Gray JR. 1972. Microstegium vimineum (Trin.) A. Camus (Gramineae) in the United States. J Torrey Bot Club 99:97–000.

    Article  Google Scholar 

  • Fierer N, Schimel JP. 2003. A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Sci Soc Am J 67:798–805.

    Article  CAS  Google Scholar 

  • Finzi AC, Sinsabaugh RL, Long TM, Osgood MP. 2006. Microbial community responses to atmospheric carbon dioxide enrichment in a warm-temperate forest. Ecosystems 9:215–226.

    Article  CAS  Google Scholar 

  • Flory SL, Clay K, Emery SM, Robb JR, Winters B. 2015. Fire and non-native grass invasion interact to suppress tree regeneration in temperate deciduous forests. J Appl Ecol 52:992–1000.

    Article  Google Scholar 

  • Fraterrigo JM, Rembelski MK (2020) Fire and drought effects on soils invaded by Microstegium vimineum in southern Illinois. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-0742378_V1

  • Fraterrigo JM, Strickland MS, Keiser AD, Bradford MA. 2011. Nitrogen uptake and preference in a forest understory following invasion by an exotic grass. Oecologia 167:781–791.

    Article  PubMed  Google Scholar 

  • Fusco EJ, Finn JT, Balch JK, Nagy RC, Bradley BA. 2019. Invasive grasses increase fire occurrence and frequency across US ecoregions. Proc Nat Acad Sci U. S. Am 116:23594–23599.

    Article  CAS  Google Scholar 

  • Glasgow LS, Matlack GR. 2007. The effects of prescribed burning and canopy openness on establishment of two non-native plant species in a deciduous forest, southeast Ohio, USA. For Ecol Manag 238:319–329.

    Article  Google Scholar 

  • Gonzalez-Perez JA, Gonzalez-Vila FJ, Almendros G, Knicker H. 2004. The effect of fire on soil organic matter - a review. Environ Int 30:855–870.

    Article  CAS  PubMed  Google Scholar 

  • Gosling P, Parsons N, Bending GD. 2013. What are the primary factors controlling the light fraction and particulate soil organic matter content of agricultural soils? Biol Fertil Soils 49:1001–1014.

    Article  Google Scholar 

  • Grace JB, Anderson TM, Olff H, Scheiner SM. 2010. On the specification of structural equation models for ecological systems. Ecol Monogr 80:67–87.

    Article  Google Scholar 

  • Greaver TL, Clark CM, Compton JE, Vallano D, Talhelm AF, Weaver CP, Band LE, Baron JS, Davidson EA, Tague CL, Felker-Quinn E, Lynch JA, Herrick JD, Liu L, Goodale CL, Novak KJ, Haeuber RA. 2016. Key ecological responses to nitrogen are altered by climate change. Nat Clim Change 6:836–843.

    Article  CAS  Google Scholar 

  • Greenwood EAN. 1976. Nitrogen Stress in Plants. Adv Agron 28:1–35.

    Article  CAS  Google Scholar 

  • Gutknecht J, Henry H, Balser T. 2010. Inter-annual variation in soil extra-cellular enzyme activity in response to simulated global change and fire disturbance. Pedobiologia 53:283–293.

    Article  CAS  Google Scholar 

  • Hawkes CV, Wren IF, Herman DJ, Firestone MK. 2005. Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecol Lett 8:976–985.

    Article  PubMed  Google Scholar 

  • Ineson P, Cotrufo MF, Bol R, Harkness DD, Blum H. 1996. Quantification of soil carbon inputs under elevated CO2:C-3 plants in a C-4 soil. Plant Soil 187:345–350.

    Article  CAS  Google Scholar 

  • Jo I, Fridley JD, Frank DA. 2015. Linking above- and belowground resource use strategies for native and invasive species of temperate deciduous forests. Biol Invasions 17:1545–1554.

    Article  Google Scholar 

  • Jo I, Fridley JD, Frank DA. 2017. Invasive plants accelerate nitrogen cycling: evidence from experimental woody monocultures. J Ecol 105:1105–1110.

    Article  CAS  Google Scholar 

  • Johnson BG, Johnson DW, Chambers JC, Blank RR. 2011. Fire effects on the mobilization and uptake of nitrogen by cheatgrass (Bromus tectorum L.). Plant Soil 341:437–445.

    Article  CAS  Google Scholar 

  • Keeley JE, Brennan TJ. 2012. Fire-driven alien invasion in a fire-adapted ecosystem. Oecologia 169:1043–1052.

    Article  PubMed  Google Scholar 

  • Knelman JE, Graham EB, Trahan NA, Schmidt SK, Nemergut DR. 2015. Fire severity shapes plant colonization effects on bacterial community structure, microbial biomass, and soil enzyme activity in secondary succession of a burned forest. Soil Biol Biochem 90:161–168.

    Article  CAS  Google Scholar 

  • Knicker H. 2007. How does fire affect the nature and stability of soil organic nitrogen and carbon? a review. Biogeochemistry 85:91–118.

    Article  CAS  Google Scholar 

  • Knicker H. 2011. Pyrogenic organic matter in soil: its origin and occurrence, its chemistry and survival in soil environments. Quat Int 243:251–263.

    Article  Google Scholar 

  • Knicker H, Gonzalez-Vila FJ, Polvillo O, Gonzalez JA, Almendros G. 2005. Fire-induced transformation of C- and N-forms in different organic soil fractions from a Dystric Cambisol under a Mediterranean pine forest (Pinus pinaster). Soil Biol Biochem 37:701–718.

    Article  CAS  Google Scholar 

  • Kreuzwieser J, Gessler A. 2010. Global climate change and tree nutrition: influence of water availability. Tree Physiol 30:1221–1234.

    Article  CAS  PubMed  Google Scholar 

  • Lavallee JM, Soong JL, Cotrufo MF. 2020. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob Change Biol 26:261–273.

    Article  Google Scholar 

  • Lee MR, Flory SL, Phillips RP. 2012. Positive feedbacks to growth of an invasive grass through alteration of nitrogen cycling. Oecologia 170:457–465.

    Article  PubMed  Google Scholar 

  • Lefcheck JS. 2016. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol Evol 7:573–579.

    Article  Google Scholar 

  • Leishman MR, Haslehurst T, Ares A, Baruch Z. 2007. Leaf trait relationships of native and invasive plants: community- and global-scale comparisons. New Phytol 176:635–643.

    Article  CAS  PubMed  Google Scholar 

  • Lenth RV. 2019. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.4.3.01

  • Ljungdahl LG, Eriksson KE. 1985. Ecology of microbial cellulose degradation. Adv Microbial Ecol 8:237–299.

    Article  CAS  Google Scholar 

  • Manzoni S, Taylor P, Richter A, Porporato A, Agren GI. 2012. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol 196:79–91.

    Article  CAS  PubMed  Google Scholar 

  • Martin JG, Bolstad PV. 2005. Annual soil respiration in broadleaf forests of northern Wisconsin: influence of moisture and site biological, chemical, and physical characteristics. Biogeochemistry 73:149–182.

    Article  Google Scholar 

  • McLeod ML, Cleveland CC, Lekberg Y, Maron JL, Philippot L, Bru D, Callaway RM. 2016. Exotic invasive plants increase productivity, abundance of ammonia-oxidizing bacteria and nitrogen availability in intermountain grasslands. J Ecol 104:994–1002.

    Article  CAS  Google Scholar 

  • Mooshammer M, Wanek W, Hammerle I, Fuchslueger L, Hofhansl F, Knoltsch A, Schnecker J, Takriti M, Watzka M, Wild B, Keiblinger KM, Zechmeister-Boltenstern S, Richter A. 2014. Adjustment of microbial nitrogen use efficiency to carbon: nitrogen imbalances regulates soil nitrogen cycling. Nat Commun 5:3694.

    Article  CAS  PubMed  Google Scholar 

  • Moritz MA, Parisien MA, Batllori E, Krawchuk MA, Van Dorn J, Ganz DJ, Hayhoe K. 2012. Climate change and disruptions to global fire activity. Ecosphere 3:49.

    Article  Google Scholar 

  • Muqaddas B, Zhou X, Lewis T, Wild C, Chen C. 2015. Long-term frequent prescribed fire decreases surface soil carbon and nitrogen pools in a wet sclerophyll forest of Southeast Queensland, Australia. Sci Total Environ 536:39–47.

    Article  CAS  PubMed  Google Scholar 

  • Nave LE, Vance ED, Swanston CW, Curtis PS. 2011. Fire effects on temperate forest soil C and N storage. Ecol Appl 21:1189–1201.

    Article  PubMed  Google Scholar 

  • Norton U, Deluca T. 2002. Microbial activity and nitrogen mineralization in forest mineral soils following heating: evaluation of post-fire effects. Soil Biol Biochem 34:263–271.

    Article  Google Scholar 

  • Ohtonen R, Fritze H, Pennanen T, Jumpponen A, Trappe J. 1999. Ecosystem properties and microbial community changes in primary succession on a glacier forefront. Oecologia 119:239–246.

    Article  PubMed  Google Scholar 

  • Ojima DS, Schimel DS, Parton WJ, Owensby CE. 1994. Long- and short-term effects of fire on nitrogen cycling in tallgrass prairie. Biogeochemistry 24:67–84.

    Article  Google Scholar 

  • Pellegrini AFA, Ahlstrom A, Hobbie SE, Reich PB, Nieradzik LP, Staver AC, Scharenbroch BC, Jumpponen A, Anderegg WRL, Randerson JT, Jackson RB. 2018. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553:194–198.

    Article  CAS  PubMed  Google Scholar 

  • Perkins LB, Hatfield G, Espeland EK. 2016. Invasive grasses consistently create similar plant-soil feedback types in soils collected from geographically distant locations. J Plant Ecol 9:180–186.

    Article  Google Scholar 

  • Refsland T, Fraterrigo J. 2018. Fire increases drought vulnerability of Quercus alba juveniles by altering forest microclimate and nitrogen availability. Funct Ecol 32:2298–2309.

    Article  Google Scholar 

  • Rietl AJ, Jackson CR. 2012. Effects of the ecological restoration practices of prescribed burning and mechanical thinning on soil microbial enzyme activities and leaf litter decomposition. Soil Biol Biochem 50:47–57.

    Article  CAS  Google Scholar 

  • Robertson PA, Heikens AL. 1994. Fire frequency in oak-hickory forests of southern Illinois. Castanea 59:286–291.

    Google Scholar 

  • Rossiter-Rachor NA, Setterfield SA, Douglas MM, Hutley LB, Cook GD. 2008. Andropogon gayanus (Gamba grass) invasion increases fire-mediated nitrogen losses in the tropical savannas of northern Australia. Ecosystems 11:77–88.

    Article  CAS  Google Scholar 

  • Rossiter-Rachor NA, Setterfield SA, Douglas MM, Hutley LB, Cook GD, Schmidt S. 2009. Invasive Andropogon gayanus (Gamba grass) is an ecosystem transformer of nitrogen relations in Australian savanna. Ecol Appl 19:1546–1560.

    Article  CAS  PubMed  Google Scholar 

  • Ryan KC, Knapp EE, Varner JM. 2013. Prescribed fire in North American forests and woodlands: history, current practice, and challenges. Front Ecol Environ 11:e15–e24.

    Article  Google Scholar 

  • Saiya-Cork KR, Sinsabaugh RL, Zak DR. 2002. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem 34:1309–1315.

    Article  CAS  Google Scholar 

  • Schimel JP, Bennett J. 2004. Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602.

    Article  Google Scholar 

  • Schimel JP, Weintraub MN. 2003. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem 35:549–563.

    Article  CAS  Google Scholar 

  • Schlesinger WH, Lichter J. 2001. Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature 411:466–469.

    Article  CAS  PubMed  Google Scholar 

  • Shipley B. 2009. Confirmatory path analysis in a generalized multilevel context. Ecology 90:363–368.

    Article  PubMed  Google Scholar 

  • Singh N, Abiven S, Torn MS, Schmidt MWI. 2012. Fire-derived organic carbon in soil turns over on a centennial scale. Biogeosciences 9:2847–2857.

    Article  CAS  Google Scholar 

  • Singh N, Abiven S, Maestrini B, Bird JA, Torn MS, Schmidt MWI. 2014. Transformation and stabilization of pyrogenic organic matter in a temperate forest field experiment. Glob Change Biol 20:1629–1642.

    Article  Google Scholar 

  • Sinsabaugh RL. 2010. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol Biochem 42:391–404.

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Follstad Shah JJ. 2012. Ecoenzymatic stoichiometry and ecological theory. Ann Rev Ecol Evol Syst 43(43):313–343.

    Article  Google Scholar 

  • Sinsabaugh RL, Moorhead DL. 1994. Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition. Soil Biol Biochem 26:1305–1311.

    Article  Google Scholar 

  • Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, Contosta AR, Cusack D, Frey S, Gallo ME, Gartner TB, Hobbie SE, Holland K, Keeler BL, Powers JS, Stursova M, Takacs-Vesbach C, Waldrop MP, Wallenstein MD, Zak DR, Zeglin LH. 2008. Stoichiometry of soil enzyme activity at global scale. Ecol Lett 11:1252–1264.

    Article  PubMed  Google Scholar 

  • Sinsabaugh RL, Hill BH, Follstad Shah JJ. 2009. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462:795–798.

    Article  CAS  PubMed  Google Scholar 

  • Soong JL, Cotrufo MF. 2015. Annual burning of a tallgrass prairie inhibits C and N cycling in soil, increasing recalcitrant pyrogenic organic matter storage while reducing N availability. Glob Change Biol 21:2321–2333.

    Article  Google Scholar 

  • Staddon PL. 2004. Carbon isotopes in functional soil ecology. Trends Ecol Evol 19:148–154.

    Article  PubMed  Google Scholar 

  • Strickland MS, Devore JL, Maerz JC, Bradford MA. 2010. Grass invasion of a hardwood forest is associated with declines in belowground carbon pools. Glob Change Biol 16:1338–1350.

    Article  Google Scholar 

  • Toberman H, Chen CR, Lewis T, Elser JJ. 2014. High-frequency fire alters C: N: P stoichiometry in forest litter. Glob Change Biol 20:2321–2331.

    Article  Google Scholar 

  • van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, Kardol P, Klironomos JN, Kulmatiski A, Schweitzer JA, Suding KN, Van de Voorde TFJ, Wardle DA. 2013. Plant-soil feedbacks: the past, the present and future challenges. J Ecol 101:265–276.

    Article  Google Scholar 

  • Vitousek P. 1982. Nutrient cycling and nutrient use efficiency. Am Nat 119:553–572.

    Article  Google Scholar 

  • Wagner SA, Fraterrigo JM. 2015. Positive feedbacks between fire and non-native grass invasion in temperate deciduous forests. For Ecol Manag 354:170–176.

    Article  Google Scholar 

  • Walters MB, Reich PB. 1997. Growth of Acer saccharum seedlings in deeply shaded understories of northern wisconsin: effects of nitrogen and water availability. Can J For Research 27:237–247.

    Article  Google Scholar 

  • Wan SQ, Hui DF, Luo YQ. 2001. Fire effects on nitrogen pools and dynamics in terrestrial ecosystems: a meta-analysis. Ecol Appl 11:1349–1365.

    Article  Google Scholar 

  • Wang QK, Zhong MC, Wang SL. 2012. A meta-analysis on the response of microbial biomass, dissolved organic matter, respiration, and N mineralization in mineral soil to fire in forest ecosystems. For Ecol Manag 271:91–97.

    Article  Google Scholar 

  • Weintraub MN, Scott-Denton LE, Schmidt SK, Monson RK. 2007. The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem. Oecologia 154:327–338.

    Article  PubMed  Google Scholar 

  • Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW. 2006. Warming and earlier spring increase western US forest wildfire activity. Science 313:940–943.

    Article  CAS  PubMed  Google Scholar 

  • Williams RJ, Hallgren SW, Wilson GWT. 2012. Frequency of prescribed burning in an upland oak forest determines soil and litter properties and alters the soil microbial community. For Ecol Manag 265:241–247.

    Article  Google Scholar 

  • Zhang P, Li B, Wu JH, Hu SJ. 2019. Invasive plants differentially affect soil biota through litter and rhizosphere pathways: a meta-analysis. Ecol Lett 22:200–210.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Evans, D. Allan, and C. Beckmann for assisting with site selection, and M. Craig, M. Mack, and two anonymous reviewers for feedback on an earlier draft. This work was supported by the Hatch Program (ILLU-875-951) from the USDA National Institute of Food and Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer M. Fraterrigo.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 311 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraterrigo, J.M., Rembelski, M.K. Frequent Fire Reduces the Magnitude of Positive Interactions Between an Invasive Grass and Soil Microbes in Temperate Forests. Ecosystems 24, 1738–1755 (2021). https://doi.org/10.1007/s10021-021-00615-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-021-00615-x

Keywords

Navigation