Skip to main content
Log in

An efficient second-order energy stable BDF scheme for the space fractional Cahn–Hilliard equation

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The space fractional Cahn–Hilliard phase-field model is more adequate and accurate in the description of the formation and phase change mechanism than the classical Cahn–Hilliard model. In this article, we propose a temporal second-order energy stable scheme for the space fractional Cahn–Hilliard model. The scheme is based on the second-order backward differentiation formula in time and a finite difference method in space. Energy stability and convergence of the scheme are analyzed, and the optimal convergence orders in time and space are illustrated numerically. Note that the coefficient matrix of the scheme is a \(2 \times 2\) block matrix with a Toeplitz-like structure in each block. Combining the advantages of this special structure with a Krylov subspace method, a preconditioning technique is designed to solve the system efficiently. Numerical examples are reported to illustrate the performance of the preconditioned iteration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abels, H., Bosia, S., Grasselli, M.: Cahn–Hilliard equation with nonlocal singular free energies. Ann. Mat. Pura Appl. 194, 1071–1106 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Acosta, G., Borthagaray, J.P.: A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55, 472–495 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ainsworth, M., Mao, Z.: Analysis and approximation of a fractional Cahn–Hilliard equation. SIAM J. Numer. Anal. 55, 1689–1718 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ainsworth, M., Mao, Z.: Well-posedness of the Cahn–Hilliard equation with fractional free energy and its Fourier Galerkin approximation. Chaos, Solitons Fractals 102, 264–273 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Akagi, G., Schimperna, G., Segatti, A.: Fractional Cahn–Hilliard, Allen–Cahn and porous medium equations. J. Differ. Equ. 261, 2935–2985 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barrett, J., Blowey, J.: Finite element approximation of the Cahn–Hilliard equation with concentration dependent mobility. Math. Comput. 68, 487–517 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertozzi, A.L., Esedoglu, S., Gillette, A.: Inpainting of binary images using the Cahn–Hilliard equation. IEEE Trans. Image Process. 16, 285–291 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bu, L., Mei, L., Hou, Y.: Stable second-order schemes for the space-fractional Cahn–Hilliard and Allen–Cahn equations. Comput. Math. Appl. 78, 3485–3500 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bu, L., Mei, L., Wang, Y., Hou, Y.: Energy stable numerical schemes for the fractional-in-space Cahn–Hilliard equation. Appl. Numer. Math. 158, 392–414 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  MATH  Google Scholar 

  11. Cai, M., Li, C.: On Riesz derivative. Fract. Calc. Appl. Anal. 22, 287–301 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chan, R., Jin, X.Q.: An Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia (2007)

    Book  MATH  Google Scholar 

  13. Chen, H., Sheng, C., Wang, L.L.: On explicit form of the FEM stiffness matrix for the integral fractional Laplacian on non-uniform meshes. Appl. Math. Lett. 113, 106864 (2021). https://doi.org/10.1016/j.aml.2020.106864

  14. Chen, W., Wang, X., Yan, Y., Zhang, Z.: A second order BDF numerical scheme with variable steps for the Cahn–Hilliard equation. SIAM J. Numer. Anal. 57, 495–525 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cheng, K., Feng, W., Wang, C., Wise, S.M.: An energy stable fourth order finite difference scheme for the Cahn–Hilliard equation. J. Comput. Appl. Math. 362, 574–595 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cohen, D.S., Murray, J.D.: A generalized diffusion model for growth and dispersal in a population. J. Math. Biol. 12, 237–249 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  17. Duo, S., van Wyk, H.W., Zhang, Y.: A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem. J. Comput. Phys. 355, 233–252 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Duo, S., Zhang, Y.: Accurate numerical methods for two and three dimensional integral fractional Laplacian with applications. Comput. Methods Appl. Mech. Eng. 355, 639–662 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Elliott, C.M., French, D.A., Milner, F.: A second order splitting method for the Cahn–Hilliard equation. Numer. Math. 54(5), 575–590 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Farshbaf-Shaker, M.H., Heinemann, C.: A phase field approach for optimal boundary control of damage processes in two-dimensional viscoelastic media. Math. Models Methods Appl. Sci. 25, 2749–2793 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Feng, X., Li, Y., Xing, Y.: Analysis of mixed interior penalty discontinuous Galerkin methods for the Cahn–Hilliard equation and the Hele–Shaw flow. SIAM J. Numer. Anal. 54, 825–847 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gu, X.M., Huang, T.Z., Ji, C.C., Carpentieri, B., Alikhanov, A.A.: Fast iterative method with a second-order implicit difference scheme for time-space fractional convection-diffusion equation. J. Sci. Comput. 72, 957–985 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gu, X.M., Sun, H.W., Zhang, Y., Zhao, Y.L.: Fast implicit difference schemes for time-space fractional diffusion equations with the integral fractional Laplacian. Math. Methods Appl. Sci. 44, 441–463 (2021)

  24. Klapper, I., Dockery, J.: Role of cohesion in the material description of biofilms. Phys. Rev. E 74, 031,902 (2006). https://doi.org/10.1103/PhysRevE.74.031902

  25. Kwaśnicki, M.: Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal. 20, 7–51 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Landkof, N.S.: Foundations of Modern Potential Theory. Springer, New York, Heidelberg (1972)

    Book  MATH  Google Scholar 

  27. Lei, S.L., Sun, H.W.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, M., Gu, X.M., Huang, C., Fei, M., Zhang, G.: A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations. J. Comput. Phys. 358, 256–282 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, Q., Mei, L.: Efficient, decoupled, and second-order unconditionally energy stable numerical schemes for the coupled Cahn–Hilliard system in copolymer/homopolymer mixtures. Comput. Phys. Commun. 260, 107290 (2020). https://doi.org/10.1016/j.cpc.2020.107290

    Article  MathSciNet  Google Scholar 

  30. Li, Q., Mei, L., You, B.: A second-order, uniquely solvable, energy stable BDF numerical scheme for the phase field crystal model. Appl. Numer. Math. 134, 46–65 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, M., Zhao, Y.L.: A fast energy conserving finite element method for the nonlinear fractional Schrödinger equation with wave operator. Appl. Math. Comput. 338, 758–773 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Liu, H., Cheng, A., Wang, H., Zhao, J.: Time-fractional Allen–Cahn and Cahn–Hilliard phase-field models and their numerical investigation. Comput. Math. Appl. 76, 1876–1892 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Macías-Díaz, J.E.: A structure-preserving method for a class of nonlinear dissipative wave equations with Riesz space-fractional derivatives. J. Comput. Phys. 351, 40–58 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ng, M.K.: Iterative Methods for Toeplitz Systems. Oxford University Press, New York (2004)

    MATH  Google Scholar 

  35. Ortigueira, M.D.: Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci. 2006, 048391 (2006). https://doi.org/10.1155/IJMMS/2006/48391

  36. Ran, M., Zhang, C.: A conservative difference scheme for solving the strongly coupled nonlinear fractional Schrödinger equations. Commun. Nonlinear Sci. Numer. Simul. 41, 64–83 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Roy, T., Jönsthövel, T.B., Lemon, C., Wathen, A.J.: A block preconditioner for non-isothermal flow in porous media. J. Comput. Phys. 395, 636–652 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  39. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, Yverdon (1993)

    MATH  Google Scholar 

  40. Southworth, B.S., Olivier, S.A.: A note on \(2 \times 2\) block-diagonal preconditioning, p. 13 (2020). ArXiv preprint https://arxiv.org/abs/2001.00711

  41. Tang, T., Yu, H., Zhou, T.: On energy dissipation theory and numerical stability for time-fractional phase-field equations. SIAM J. Sci. Comput. 41, A3757–A3778 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  42. Varga, R.S.: Geršgorin and His Circles. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  43. Wang, F., Chen, H., Wang, H.: Finite element simulation and efficient algorithm for fractional Cahn–Hilliard equation. J. Comput. Appl. Math. 356, 248–266 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. Weng, Z., Huang, L., Wu, R.: Numerical approximation of the space fractional Cahn-Hilliard equation. Math. Probl. Eng. 2019, 3163702 (2019). https://doi.org/10.1155/2019/3163702

  45. Weng, Z., Zhai, S., Feng, X.: A Fourier spectral method for fractional-in-space Cahn–Hilliard equation. Appl. Math. Model. 42, 462–477 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wise, S., Kim, J., Lowengrub, J.: Solving the regularized, strongly anisotropic Cahn–Hilliard equation by an adaptive nonlinear multigrid method. J. Comput. Phys. 226(1), 414–446 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yan, Y., Chen, W., Wang, C., Wise, S.M.: A second-order energy stable BDF numerical scheme for the Cahn–Hilliard equation. Commun. Comput. Phys. 23(2), 572–602 (2018)

    Article  MathSciNet  Google Scholar 

  48. Zhai, S., Wu, L., Wang, J., Weng, Z.: Numerical approximation of the fractional Cahn–Hilliard equation by operator splitting method. Numer. Algorithms 84(3), 1–24 (2019). https://doi.org/10.1007/s11075-019-00795-7

    Article  MathSciNet  Google Scholar 

  49. Zhao, Y.L., Zhu, P.Y., Gu, X.M., Zhao, X.L., Cao, J.: A limited-memory block bi-diagonal Toeplitz preconditioner for block lower triangular Toeplitz system from time-space fractional diffusion equation. J. Comput. Appl. Math. 362, 99–115 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhao, Y.L., Zhu, P.Y., Gu, X.M., Zhao, X.L., Jian, H.Y.: A preconditioning technique for all-at-once system from the nonlinear tempered fractional diffusion equation. J. Sci. Comput. 83, 10 (2020). https://doi.org/10.1007/s10915-020-01193-1

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Nos. 11801527, 61876203, 61772003, 11801463 and 11701522) and the Applied Basic Research Program of Sichuan Province (No. 2020YJ0007). The first author is also supported by the China Scholarship Council. We would like to express our sincere thanks to the referees for insightful comments and invaluable suggestions that greatly improved the representation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Li.

Additional information

Communicated by Marko Huhtanen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, the convergence orders of (3.2) with lower spatial regularity are provided.

Example A

Consider Example 1 with the exact solution and source terms given by

$$\begin{aligned}&\phi (x,t) = \mu (x,t) = {\left\{ \begin{array}{ll} \exp (t) \left( 1 - x^2 \right) ^{1 + \alpha /2}, &{} (x,t) \in \Omega \times (0,T], \\ 0, &{} (x,t) \in \mathbb {R} {\setminus } \Omega \times (0,T], \end{array}\right. }\\ f(x,t)= & {} \exp (t) \left\{ \left( 1 - x^2 \right) ^{1 + \alpha /2} + \frac{2^{\alpha } \Gamma (\frac{\alpha + 1}{2}) \Gamma (2 + \alpha /2)}{\sqrt{\pi } \Gamma (2)} \left[ 1 - \left( \alpha + 1 \right) x^2 \right] \right\} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \psi (x,t)&= \exp (t) \left\{ \left( 1 - x^2 \right) ^{1 + \alpha /2} - \frac{2^{\alpha } \Gamma (\frac{\alpha + 1}{2}) \Gamma (2 + \alpha /2)}{\sqrt{\pi } \Gamma (2)} \varepsilon ^2 \left[ 1 - \left( \alpha + 1 \right) x^2 \right] \right\} \\&\qquad - \exp (3 t) \left( 1 - x^2 \right) ^{3 + 3 \alpha /2} + \exp (t) \left( 1 - x^2 \right) ^{1 + \alpha /2}, \end{aligned} \end{aligned}$$

respectively.

The errors and the convergence orders are listed in Tables 5 and 6. They show that the convergence order of our scheme (3.2) is \(\mathcal {O}(\tau ^2 + h^2)\). Comparing with the work [17], the convergence order of space is higher than \(1 - \frac{\alpha }{2}\).

Table 5 Numerical errors and the time convergence orders for Example A with \(\sigma = 1/16\) and \(N = 2048\)
Table 6 Numerical errors and the space convergence orders for Example A with \(\sigma = 1/16\) and \(M = 1024\)
Table 7 Numerical errors and the convergence orders for Example B with \(\sigma = 1/16\) and \(M = N\)

Example B

In this example, we consider SFCH (1.1) with a solution that has lower regularity than that of Example A. More precisely, consider Example 1 with the exact solution and source terms given by

$$\begin{aligned}&\phi (x,t) = \mu (x,t) = {\left\{ \begin{array}{ll} \exp (t) \left( 1 - x^2 \right) ^{\alpha /2}, &{} (x,t) \in \Omega \times (0,T], \\ 0, &{} (x,t) \in \mathbb {R} {\setminus } \Omega \times (0,T], \end{array}\right. }\\&f(x,t) = \exp (t) \left[ \left( 1 - x^2 \right) ^{\alpha /2} + \Gamma (\alpha + 1) \right] \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \psi (x,t)&= \exp (t) \left[ \left( 1 - x^2 \right) ^{\alpha /2} - \varepsilon ^2 \Gamma (\alpha + 1) \right] - \exp (3 t) \left( 1 - x^2 \right) ^{3 \alpha /2} \\&\quad +\, \exp (t) \left( 1 - x^2 \right) ^{\alpha /2}, \end{aligned} \end{aligned}$$

respectively.

The numerical errors and the observed convergence orders are listed in Table 7. It can be seen that for this lower regularity solution, the observed convergence order is almost \(\alpha /2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, YL., Li, M., Ostermann, A. et al. An efficient second-order energy stable BDF scheme for the space fractional Cahn–Hilliard equation. Bit Numer Math 61, 1061–1092 (2021). https://doi.org/10.1007/s10543-021-00843-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-021-00843-6

Keywords

Mathematics Subject Classification

Navigation