Skip to main content
Log in

Contribution of Binary Stars to the Velocity Dispersion inside OB Associations with Gaia DR2 Data

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

We estimated the contribution of binary systems to the velocity dispersion inside OB-associations derived from Gaia DR2 proper motions. The maximum contribution to the velocity dispersion is given by the systems with the period of revolution of \(P = 5.9\) yr whose components shift by a distance of about the diameter of the system during the base-line time of Gaia DR2 observations. We employed two methods to study the motion of the photocenter of the binary system: the first one uses the total displacement between the initial and final visibility periods and the second one is based on solving a system of \(n\) equations defining the displacements at the times \({{t}_{n}}\). The first and second methods yield very similar \({{\sigma }_{{bn}}}\) values of 0.90 and 0.87 km/s, respectively. Taking into account the fact that orbits are elliptical slightly decreases the inferred \({{\sigma }_{{bn}}}\). We estimated the eccentricity-averaged \(\overline {{{\sigma }_{{bn}}}} \) value to be \(\overline {{{\sigma }_{{bn}}}} = 0.81\) km/s assuming that the orbital eccentricities of massive binary systems are distributed uniformly in the \(e \in [0,0.9]\) interval. The choice of the exponent \(\gamma \) in the power-law distribution, \({{p}_{q}} \sim {{q}^{\gamma }}\), of the component-mass ratios \(q = {{M}_{2}}{\text{/}}{{M}_{1}}\) of binary systems appears to have little effect on \({{\sigma }_{{bn}}}\). A change of \(\gamma \) from 0 (flat distribution) to \( - \)2.0 (preponderance of systems with low-mass components) changes \({{\sigma }_{{bn}}}\) from 0.90 to 1.07 km/s. The paper is based on a presentation made at the conference “Astrometry yesterday, today, tomorrow” (SAI MSU, Oct. 14–16, 2019).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. T. Prusti, J. H. J. de Bruijne, A. G. A. Brown, A. Vallenari, et al., Astron. Astrophys. 595, A1 (2016).

    Article  Google Scholar 

  2. A. G. A. Brown, A. Vallenari, T. Prusti, de J. H. J. Bruijne, et al., Astron. Astrophys. 616, A1 (2018).

    Article  Google Scholar 

  3. L. Lindegren, J. Hernandez, A. Bombrun, S. Klioner, et al., Astron. Astrophys. 616, A2 (2018).

    Article  Google Scholar 

  4. V. A. Ambartsumian, Astron. Zh. 26, 3 (1949).

    ADS  Google Scholar 

  5. C. Blaha and R. M. Humphreys, Astron. J. 98, 1598 (1989).

    Article  ADS  Google Scholar 

  6. B. G. Elmegreen, Mon. Not. R. Astron. Soc. 203, 1011 (1983).

    Article  ADS  Google Scholar 

  7. R. B. Larson, Mon. Not. R. Astron. Soc. 194, 809 (1981).

    Article  ADS  Google Scholar 

  8. M. R. Krumholz, C. D. Matzner, and C. F. McKee, Astrophys. J. 653, 361 (2006).

    Article  ADS  Google Scholar 

  9. A. M. Melnik and A. K. Dambis, Mon. Not. R. Astron. Soc. 472, 3887 (2017).

    Article  ADS  Google Scholar 

  10. A. M. Melnik and A. K. Dambis, Mon. Not. R. Astron. Soc. 493, 2339 (2020).

    Article  ADS  Google Scholar 

  11. D. B. Sanders, N. Z. Scoville, and P. M. Solomon, A-strophys. J. 289, 373 (1985).

    ADS  Google Scholar 

  12. B. D. Mason, D. R. Gies, W. I. Hartkopf, W. G. Bagnuolo, T. ten Brummelaar, and H. A. McAlister, -Astron. J. 115, 821 (1998).

    Article  ADS  Google Scholar 

  13. H. Sana, in The Lives and Death-Throes of Massive Stars, Proc. IAU Symp. 329, 110 (2017).

  14. H. Sana, A. de Koter, S. E. de Mink, P. R. Dunstall, et al., Astron. Astrophys. 550, A107 (2013).

    Article  Google Scholar 

  15. M. Moe and R. di Stefano, Astrophys. J. Suppl. 230, 15 (2017).

    Article  Google Scholar 

  16. F. Arenou, X. Luri, C. Babusiaux, C. Fabricius, et al., Astron. Astrophys. 616, A17 (2018).

    Article  Google Scholar 

  17. C. Fabricius, U. Bastian, J. Portell, J. Castaneda, et al., Astron. Astrophys. 595, A3 (2016).

    Article  Google Scholar 

  18. N. Duric, Advanced Astrophysics (Cambridge Univ. Press, Cambridge, UK, 2004).

    Google Scholar 

  19. E. J. Aldoretta, S. M. Caballero-Nieves, D. R. Gies, E. P. Nelan, et al., Astron. J. 149, 26 (2015).

    Article  ADS  Google Scholar 

  20. E. Öpik, Publ. Observ. Astron. Univ. Tartu 28, 1 (1924).

    Google Scholar 

  21. H. A. Abt, Ann. Rev. Astron. Astrophys. 21, 343 (1983).

    Article  ADS  Google Scholar 

  22. H. Sana and C. J. Evans, IAU Symp. 272, 474 (2011).

  23. D. Michalik, L. Lindegren, and D. Hobbs, Astron. A-strophys. 574, A115 (2015).

    Article  ADS  Google Scholar 

  24. H. A. Kobulnicky, D. C. Kiminki, M. J. Lundquist, J. Burke, et al., Astrophys. J. Suppl. 213, 34 (2014).

    Article  Google Scholar 

  25. O. Y. Malkov, V. S. Tamazian, J. A. Docobo, and D. A. Chulkov, Astron. Astrophys. 546, A69 (2012).

    Article  ADS  Google Scholar 

  26. G. N. Duboshin, Celestial Mechanics: The Main Problems and the Methods (Moscow, Nauka, 1975) [in Russian].

    Google Scholar 

  27. J. M. A. Danby, Fundamentals of Celestial Mechanics, 2nd ed. (Willmann-Bell, Richmond, VA, 1988).

    Google Scholar 

  28. P. C. Myers, T. M. Dame, P. Thaddeus, R. S. Cohen, R. F. Silverberg, E. Dwek, and M. G. Hauser, Astrophys. J. 301, 398 (1986).

    Article  ADS  Google Scholar 

  29. N. J. Evans, M. M. Dunham, J. K. Jorgensen, M. L. Enoch, et al., Astrophys. J. Suppl. 181, 321 (2009).

    Article  Google Scholar 

  30. P. Garcia, L. Bronfman, L.-A. Nyman, T. M. Dame, and A. Luna, Astrophys. J. Suppl. 212, 2 (2014).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data P-rocessing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement.

Funding

A.D. acknowledges the support from the Russian Foundation for Basic Research (project nos. 18-02-00890 and 19-02-00611).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Melnik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnik, A.M., Dambis, A.K. Contribution of Binary Stars to the Velocity Dispersion inside OB Associations with Gaia DR2 Data. Astron. Rep. 65, 71–81 (2021). https://doi.org/10.1134/S106377292033001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377292033001X

Navigation