Skip to main content
Log in

Mathematical Modeling of Kinetics of Iodine-Containing Radiotracers in Nuclear Medicine Problems

  • CONTROL IN TECHNICAL SCIENCES
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We consider methods for modeling and develop a unified approach to constructing mathematical models of the kinetics of radiopharmaceuticals with iodine isotopes in the human body during diagnostic and therapeutic procedures of nuclear medicine. Various techniques for identifying the model parameters based on quantitative data of radionuclide studies of the functional state of organs are proposed. The results of pharmacokinetic modeling in radionuclide diagnostics of the liver, kidneys, and thyroid using iodine-containing radiopharmaceuticals are presented and analyzed. The features and results of modeling and dosimetric planning of thyroid radioiodine therapy are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Kar, N.R., Production and applications of radiopharmaceuticals: a review, Int. J. Pharm. Invest., 2019, vol. 9, no. 2, pp. 36–42. doi: https://doi.org/10.1007/10.5330/ijpi.2019.2.8

    Article  Google Scholar 

  2. Payolla, F.B., Massabni, A.C., and Orvig, C., Radiopharmaceuticals for diagnosis in nuclear medicine: a short review, Ecléetica Quim. J., 2019, vol. 44, no. 3, pp. 11–19. https://doi.org/10.26850/1678-4618eqj.v44.3.2019.p11-19

    Article  Google Scholar 

  3. Debnath, S., Babu, M.N., and Kumar, G.V., Radiopharmaceuticals and their therapeutic applications in health care system, Pharma Times, 2016, vol. 48, no. 3, pp. 15–18. https://doi.org/10.5958/2231-5659.2015.00032.6

    Google Scholar 

  4. Zyryanov, S.K. and Zatolochina, K.E., Prospects of applying radionuclide pharmaceuticals in treatmentof malignant tumor in the RF, Kach. Klin. Prakt., 2018, no. 2, pp. 51–57. https://doi.org/10.24411/2588-0519-2018-10044

  5. Chernov, V.I., Medvedeva, A.A., Sinilkin, I.G., Cel’chan, R.V., Bragina, O.D., and Choinzonov, E.L., Nuclear medicine in diagnostics and targeted treatment of malignant tumor, Byull. Sib. Med., 2018, vol. 17, no. 1, pp. 220–231. https://doi.org/10.20538/1682-0363-2018-1-220-231

    Article  Google Scholar 

  6. Matveev, A.V., Yadernaya meditsina: radioizotopy i farmpreparaty (Nuclear Medicine: Radioisotopes and Pharmaceuticals), Omsk: Izd. Omsk. Gos. Univ., 2016.

    Google Scholar 

  7. Tsyb, A.F., Dreval’, A.V., Garbuzov, P.I., et al., Radioiodterapiya tireotoksikoza: rukovodstvo (Radioactive Iodine Therapy of Thyrotoxicosis: a Handbook), Moscow: GEOTAR-Media, 2009.

    Google Scholar 

  8. Radionuklidnaya diagnostika dlya prakticheskikh vrachei (Radionuclide Diagnostics for Practical Purposes), Lishmanova, Yu.B. and Chernova, V.I., Eds., Tomsk: STT, 2004.

  9. Sinyakova, O.G., Methods of mathematical modeling for estimation of the organism condition (radionuclide diagnostics), Autom. Remote Control, 2005, vol. 66, pp. 129–138. https://doi.org/10.1007/s10513-005-0013-5

    Article  MathSciNet  Google Scholar 

  10. Sergienko, V.I., Dzhelliff, R., and Bondareva, I.B., Prikladnaya farmakokinetika: osnovnye polozheniya i klinicheskoe primenenie (Applied Pharmacokinetics: Fundamentals and Clinical Applications), Moscow: Izd. Ross. Akad. Med. Nauk, 2003.

    Google Scholar 

  11. Bondareva, I.B., Mathematical modeling in pharmacokinetics and pharmacodynamics, Doctoral (Biol.) Dissertation, Moscow, 2001.

  12. Galanin, M.P. and Khodzhaeva, S.R., Development and testing of methods for solving stiff ordinary differential equations, Mat. Model. Chislennye Metody, 2014, no. 4, pp. 95–119.

  13. Kalitkin, N.N. and Koryakin, P.V., Chislennye metody: v 2 kn. Kn. 2. Metody matematicheskoi fiziki: uchebnik dlya studentov vuzov (Numerical Methods, in 2 Books. Book 2: Methods of Mathematical Physics. A Handbook for University Students), Moscow: Izd. Tsentr Akademiya, 2013.

    Google Scholar 

  14. Sulimov, V.D., Shkapov, P.M., and Nosachev, S.K., Local pattern search in hybrid algorithm of global optimization, Nauka Obraz.: Nauchn. Izdan. MGTU im. N.E. Baumana, 2014, no. 6, pp. 107–123. https://doi.org/10.7463/0614.0716155

  15. Hooke, R. and Jeeves, T.A., Direct Search Solution of Numerical and Statistical Problems. Translated under the title: Pryamoi poisk resheniya dlya chislovykh i statisticheskikh problem, Moscow: Mir, 1961.

  16. Al-jubeh, W., Shaheen, A., and Zalloum, O., Radioiodine I-131 for diagnosing and treatment of thyroid diseases, Conf. Paper., 2012. no. 6. https://www.researchgate.net/publication/295919808 .

  17. Tang, J., Kong, D., Cui, Q., Wang, K., Zhang, D., Liao, X., Gong, Y., and Wu, G., The role of radioactive iodine therapy in papillary thyroid cancer: an observational study based on SEER, OncoTargets Therapy, 2018, vol. 11, pp. 3551–3560. https://doi.org/10.2147/OTT.S160752

    Article  Google Scholar 

  18. Matveev, A.V. and Noskovets, D.Yu., Pharmacokinetic modeling and dosimetric planning of radioiodine therapy of thyrotoxicosis, Vestn. Omsk. Univ., 2014, no. 4, pp. 57–64.

  19. Matveev, A.V. and Noskovets, D.Yu., Features of dosimetric planning of radioiodine therapy based on pharmacokinetic modeling, Vestn. Omsk. Univ., 2016, no. 3, pp. 74–83.

  20. Vlasova, O.P., Klepov, A.N., Matusevich, E.S., and Potsulko, E.P., Mathematical modeling for dosimetric planning of radioiodine therapy of patients with thyroid diseases, Vestn. Nov. Med. Tekhnol., 2008, vol. 15, no. 1, pp. 17–19.

    Google Scholar 

  21. Lipanova, N.N., Klepov, A.N., and Narkevich, B.Ya., Dosimetric planning and Dose Control in radioiodine therapy of thyroid cancer, Med. Radiol. Radiats. Bezop., 2012, vol. 57, no. 3, pp. 53–65.

    Google Scholar 

  22. Lipanova, N.N., Radiobiological and dosimetric justification of radionuclide therapy of thyroid diseases, Cand. Sci. Dissertation, Moscow, 2012.

  23. Vlasova, O.P., A method for identifying the parameters of metabolism of radioactive iodine and calculating absorbed doses under radionuclide therapy of thyroid, Cand. Sci. (Biol.) Dissertation, Moscow, 2010.

  24. Lizogub, D.S. and Matveev, A.V., Radioisotope methods of research in diagnostics of thyroid diseases, in Molodezh’ tret’ego tysyacheletiya [Elektronnyi resurs]: sb. nauch. statei, (The Youth of the Third Millenium [Electronic Resource]: Coll. Sci. Pap.), Belim, S.V., Ed., Omsk: Izd. Omsk. Gos. Univ., 2017. https://omsu.ru/science/materialy-konferentsiy/2017/M-III_2017.pdf .

  25. Lizogub, D.S. and Matveev, A.V., Individual dosimetric planning of radioactive iodine therapy based on chamber modeling, Probl. Nauchn. Mysli, 2019, vol. 7, no. 3, pp. 15–17.

    Google Scholar 

  26. Silberstein, E.B., Comparison of outcomes after \({}^{\mathrm {123}}\mathrm {I} \) versus \({}^{\mathrm {131}}\mathrm {I} \) preablation imaging before radioiodine ablation in differentiated thyroid carcinoma, J. Nucl. Med., 2007, vol. 48, no. 7, pp. 1043–1046. https://doi.org/10.2967/jnumed.107.040311

    Article  Google Scholar 

  27. Matveev, A.V., Pharmacokinetic model and calculation of absorbed doses in radionuclide therapy of thyroid cancer, Luchevaya Diagn. Ter., 2019, no. 4, pp. 80–86. https://doi.org/10.22328/2079-5343-2019-10-4-80-86

  28. Polenko, V.K., Ponomarev, P.S., Chibisov, V.A., et al., Radioizotopnaya diagnostika. Metod. pos. (Radioisotope Diagnostics: a Teaching Aid), Moscow: Voenizdat, 1984.

    Google Scholar 

  29. Matveev, A.V. and Korneeva, M.Yu., Features of modeling the kinetics of radiopharmaceuticals in function tests of hepatobiliary system, Vestn. Omsk. Gos. Univ., 2015, no. 3, pp. 42–51.

  30. Kundin, V.Yu. and Pospelov, S.V., Radiopharmaceuticals for imaging and assessment of functional status of urinary track system, Urologiya. Ukr. Nauk.-Prakt. Zh. Urologiv, Andrologiv, Nefrologiv, 2012, vol. 16, no. 2(61), pp. 58–64.

    Google Scholar 

  31. Lopatkin, N.A. and Pugachev, A.G., Puzyrno-mochetochnikovyi reflyuks (VesicouretericReflux), Moscow: Meditsina, 1990.

    Google Scholar 

  32. Matveev, A.V., Features of modeling the kinetics of radiopharmaceuticals in function tests of urinary track system, Vestn. Omsk. Univ., 2019, vol. 24, no. 3, pp. 58–68. https://doi.org/10.25513/1812-3996.2019.24(3).58-68

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Matveev.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matveev, A.V. Mathematical Modeling of Kinetics of Iodine-Containing Radiotracers in Nuclear Medicine Problems. Autom Remote Control 82, 115–131 (2021). https://doi.org/10.1134/S0005117921010082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117921010082

Keywords

Navigation