Skip to main content

Advertisement

Log in

An Energy-Saving Transmit Method Between Internet of Things Device and Base Station Under Fading Channel

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In the Internet of things (IoT), the energy-saving of battery-powered IoT terminal is a key problem. To address it, a novel transceiver is proposed, and a transmission scheme is presented by exploiting the fading characteristic of the wireless channel. Based on the novel transceiver design, the IoT terminal can periodically observe the wireless channel gain and determine the appropriate time to upload information to the base station (BS). When the instantaneous wireless channel gain is lower than the wireless channel gain threshold that can be found using optimal stopping rules, the IoT keeps silent and continues to observe the wireless channel gain while when it is higher than the threshold, the IoT terminal uploads its information to the BS. We analyze the energy consumption performance of the proposed transmission scheme and compare it with that of the normal transmission scheme which transmits the information to the BS regardless of the instantaneous wireless channel gain. Simulations results show that the proposed transmission scheme significantly outperforms the normal ones especially under the scenarios featuring long information bits, low received signal-to-noise, and small Rician factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Stankovic, J. A. (2014). Research directions for the Internet of Things. IEEE Internet of Things Journal, 1(1), 3–9.

    Article  Google Scholar 

  2. Teixeira, F. A., Pereira, F. M. Q., Wong, H. C., Nogueira Jos, M. S., & Oliveira, L. B. (2019). SIoT: Securing internet of things through distributed systems analysis. Future Generation Computer Systems, 92, 1172–1186.

    Article  Google Scholar 

  3. Wang, N., Li, T., Zhang, Z., & Cui, L. (2019). An active transfer learning method for Internet of Things applications. In Proceedings of the 2019 IEEE international conference on communications (ICC).

  4. Bhatt, C. M., Dey, N., & Ashour, A. (2017). Internet of Things and big data technologies for next generation healthcare. Dordrecht: Springer.

    Book  Google Scholar 

  5. Lazarescu, M. T. (2013). Design of a WSN platform for long-term environmental monitoring for IoT applications. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(1), 45–54.

    Article  Google Scholar 

  6. Lin, D., Tang, Y., Yao, Y., & Vasilakos, A. V. (2017). User-priority-based power control over the D2D assisted internet of vehicles for mobile health. IEEE Internet of Things Journal, 4(3), 824–831.

    Article  Google Scholar 

  7. Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of things for smart cities. IEEE Internet of Things Journal, 1(1), 22–32.

    Article  Google Scholar 

  8. Mennicken, S., Vermeulen, J., & Huang, E. M. (2014). From today’s augmented houses to tomorrow’s smart homes: New directions for home automation research. In Proceedings of the 2014 ACM international joint conference on pervasive and ubiquitous computing.

  9. Perera, C., Zaslavsky, A., Christen, P., & Georgakopoulos, D. (2014). Context aware computing for the internet of things: A survey. IEEE Communications Surveys and Tutorials, 16(1), 414–454.

    Article  Google Scholar 

  10. Fang, S., Da Xu, L., Zhu, Y., Ahati, J., Pei, H., Yan, J., & Liu, Z. (2014). An integrated system for regional environmental monitoring and management based on internet of things. IEEE Transactions on Industrial Informatics, 10(2), 1596–1605.

    Article  Google Scholar 

  11. Chowdhury, S. M., & Hossain, A. (2020). Different energy saving schemes in wireless sensor networks: A survey. Wireless Personal Communications, 114, 2043–2062.

    Article  Google Scholar 

  12. Da Xu, L., He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE Transactions on Industrial Informatics, 10(4), 2233–2243.

    Article  Google Scholar 

  13. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2016). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys Tutorials, 17(4), 2347–2376.

    Article  Google Scholar 

  14. Seneviratne, S., Hu, Y., Nguyen, T., Lan, G., Khalifa, S., Thilakarathna, K., & Hassan, M. (2017). Seneviratne, A survey of wearable devices and challenges. IEEE Communications Surveys and Tutorials, 19(4), 2573–2620.

    Article  Google Scholar 

  15. Djiroun, F. Z., & Djenouri, D. (2017). Mac protocols with wake-up radio for wireless sensor networks: A review. IEEE Communications Surveys and Tutorials, 19(1), 587–618.

    Article  Google Scholar 

  16. Koc, A. T., Jha, S. C., Vannithamby, R., & Torlak, M. (2014). Device power saving and latency optimization in LTE-A networks through DRX configuration. IEEE Transactions on Wireless Communications, 13(5), 2614–2625.

    Article  Google Scholar 

  17. Ramazanali, H., & Vinel, A. (2016). Performance evaluation of LTE/LTE-A DRX: A markovian approach. IEEE Internet of Things Journal, 3(3), 386–397.

    Article  Google Scholar 

  18. Liang, J.-M., Chen, J.-J., Cheng, H.-H., & Tseng, Y.-C. (2013). An energy-efficient sleep scheduling with QoS consideration in 3GPP LTE-advanced networks for Internet of Things. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(1), 13–22.

    Article  Google Scholar 

  19. 3GPP. (2015). TS 24.301-5.3.11: Power saving mode. http://www.3gpp.org/ftp/Specs/html-info/24301.htm. Technical Report.

  20. 3GPP. (2015). TS 23.682-4.5.4: UE power saving mode. http://www.3gpp.org/ftp/Specs/html-info/23682.htm. Technical Report.

  21. Qiao, D., & Shin, K. G. (2005). Smart power-saving mode for IEEE 802.11 wireless LANs. In Proceedings of the INFOCOM 2005. 24th annual joint conference of the ieee computer and communications societies.

  22. Glaropoulos, I., Mangold, S., & Vukadinovic, V. (2013). Enhanced IEEE 802.11 power saving for multi-hop toy-to-toy communication. In Proceedings of the 2013 IEEE international conference on and IEEE cyber, physical and social computing.

  23. Collotta, M., & Pau, G. (2015). Bluetooth for internet of things: A fuzzy approach to improve power management in smart homes. Computers and Electrical Engineering, 44, 137–152.

    Article  Google Scholar 

  24. Liu, W., Shoji, Y., & Shinkuma, R. (2017). Logical correlation-based sleep scheduling for WSNs in ambient-assisted homes. IEEE Sensors Journal, 17(10), 3207–3218.

    Article  Google Scholar 

  25. Liu, D., Zhou, Q., Zhang, Z., & Liu, B. (2016). Cluster-based energy-efficient transmission using a new hybrid compressed sensing in WSN. In Proceedings of the 2016 IEEE conference on computer communications workshops (INFOCOM WKSHPS).

  26. Jejurikar, R., & Gupta, R. (2004). Dynamic voltage scaling for systemwide energy minimization in real-time embedded systems. In Proceedings of the 2004 international symposium on low power electronics and design.

  27. Mao, J., Cassandras, C. G., & Zhao, Q. (2007). Optimal dynamic voltage scaling in energy-limited nonpreemptive systems with real-time constraints. IEEE Transactions on Mobile Computing, 6(6), 678–688.

    Article  Google Scholar 

  28. Klinefelter, A., Roberts, N. E., Shakhsheer, Y., Gonzalez, P., Shrivastava, A., Roy, A., et al. (2015). 21.3 a 6.45 \(\mu\)w self-powered IoT SoC with integrated energy-harvesting power management and ulp asymmetric radios. In Proceedings of the 2015 IEEE international solid-state circuits conference.

  29. Martinez, B., Montón, M., Vilajosana, I., & Prades, J. D. (2015). The power of models: Modeling power consumption for IoT devices. IEEE Sensors Journal, 15(10), 5777–5789.

    Article  Google Scholar 

  30. Hou, C., & Zhao, Q. (2015). Bayesian prediction-based energy-saving algorithm for embedded intelligent terminal. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 23(12), 2902–2912.

    Article  Google Scholar 

  31. Kim, J., Lin, X., Shroff, N. B., & Sinha, P. (2010). Minimizing delay and maximizing lifetime for wireless sensor networks with anycast. IEEE/ACM Transactions on Networking (TON), 18(2), 515–528.

    Article  Google Scholar 

  32. Al-Turjman, F., Radwan, A., & Mumtaz, S. (2017). Mobile traffic modelling for wireless multimedia sensor networks in IoT. Computer Communications, 112, 109–115.

    Article  Google Scholar 

  33. Ismail, M., & Zhuang, W. (2011). Network cooperation for energy saving in green radio communications. IEEE Wireless Communications, 18(5), 76–81.

    Article  Google Scholar 

  34. Alabady, S. A., Salah, M. F. M., & Al-Turjman, F. (2018). LCPC error correction code for IoT applications. Sustainable Cities and Society, 42, 663–673.

    Article  Google Scholar 

  35. Hasan, M. Z., & Al-Turjman, F. (2018). SWARM-based data delivery in social internet of things, smart things and femtocells. Boca Raton: CRC Press.

    Google Scholar 

  36. Hasan, M. Z., & Al-Turjman, F. (2017). Optimizing multipath routing with guaranteed fault tolerance in Internet of Things. IEEE Sensors Journal, 17(19), 6463–6473.

    Article  Google Scholar 

  37. Al-Turjman, F., & Ayman, R. (2017). Data delivery in wireless multimedia sensor networks: Challenging and defying in the IoT era. IEEE Wireless Communications, 24(5), 126–131.

    Article  Google Scholar 

  38. Hasan, M. Z., Al-Rizzo, H., & Al-Turjman, F. (2017). A survey on multipath routing protocols for QoS assurances in real-time wireless multimedia sensor networks. IEEE Communications Surveys and Tutorials, 19(3), 1424–1456.

    Article  Google Scholar 

  39. Zlatanov, N., & Schober, R. (2013). Buffer-aided relaying with adaptive link selectionfixed and mixed rate transmission. IEEE Transactions on Information Theory, 59(5), 2816–2840.

    Article  MathSciNet  MATH  Google Scholar 

  40. Shaqfeh, M., Zafar, A., Alnuweiri, H., & Alouini, M.-S. (2016). Maximizing expected achievable rates for block-fading buffer-aided relay channels. IEEE Transactions on Wireless Communications, 15(9), 5919–5931.

    Article  Google Scholar 

  41. Cohen, K., & Leshem, A. (2011). Energy-efficient detection in wireless sensor networks using likelihood ratio and channel state information. IEEE Journal on Selected Areas in Communications, 29(8), 1671–1683.

    Article  Google Scholar 

  42. Fu, A., Modiano, E., & Tsitsiklis, J. (2003). Optimal energy allocation for delay-constrained data transmission over a time-varying channel. In Proceedings of the INFOCOM 2003 twenty-second annual joint conference of the IEEE computer and communications.

  43. Cheng, Y. H., Kao, S. J., Yang, Z. C., & Wang, H. L. (2017). Energy saving mechanism with a route prediction based intra-handover in LTE networks. Wireless Personal Communications, 92, 807–824.

    Article  Google Scholar 

  44. Nalluri, P. R. K., & Bala, G. J. (2019). An efficient energy saving sink selection scheme with the best base station placement strategy using tree based self organizing protocol for IoT. Wireless Personal Communications, 109, 869–895.

    Article  Google Scholar 

  45. Mulatu, M. A. (2017). Energy cooperation in communication of energy harvesting tags. AEU-International Journal of Electronics and Communications, 71, 145–151.

    Google Scholar 

  46. Zhang, S., Wu, Q., Xu, S., & Li, G. Y. (2017). Fundamental green tradeoffs: Progresses, challenges, and impacts on 5G networks. IEEE Communications Surveys and Tutorials, 19(1), 33–56.

    Article  Google Scholar 

  47. Al-Turjman, F. (2018). QoS-aware data delivery framework for safety-inspired multimedia in integrated vehicular-IoT. Computer Communications, 121, 33–43.

    Article  Google Scholar 

  48. Al-Turjman, F. (2017). Price-based data delivery framework for dynamic and pervasive IoT, cognitive sensors and IoT. Boca Raton: CRC Press.

    Google Scholar 

  49. Al-Turjman, F. (2019). Cognitive routing protocol for disaster-inspired Internet of Things. Future Generation Computer Systems, 92, 1103–1115.

    Article  Google Scholar 

  50. Singh, G. T., & Al-Turjman, F. (2016). Learning data delivery paths in QoI-aware information-centric sensor networks. IEEE Internet of Things Journal, 3(4), 572–580.

    Article  Google Scholar 

  51. Ludwig, R., & Bretchko, P. (2000). RF circuit design: Theory and applications. New York, NJ: Prentice Hall.

    Google Scholar 

  52. Liang, J. M., Chen, J. J., Cheng, H. H., & Tseng, Y. C. (2013). An energy-efficient sleep scheduling with QOS consideration in 3GPP LTE-advanced networks for Internet of Things. IEEE Journal on Emerging Selected Topics in Circuits Systems, 3(1), 13–22.

    Article  Google Scholar 

  53. Wang, T., Liu, Y., & Vasilakos, A. V. (2015). Survey on channel reciprocity based key establishment techniques for wireless systems. Wireless Networks, 21(6), 1835–1846.

    Article  Google Scholar 

  54. Wu, S. H., Jia, X. Y., Mei, K., Shuai, C. C., Hsieh, T. Y., & Lin, H. C., et al. (2016). Extremely low power c-axis aligned crystalline In-Ga-Zn-o 60 nm transistor integrated with industry 65 nm si mosfet for iot normally-off CPU application. In Proceedings of the 2016 IEEE symposium on VLSI technology .

  55. Gozalvez, J. (2016). New 3GPP standard for iot mobile radio. IEEE Vehicular Technology Magazine, 11(1), 14–20.

    Article  Google Scholar 

  56. Hwang, C.-H., & Wu, A.C.-H. (2000). A predictive system shutdown method for energy saving of event-driven computation. ACM Transactions on Design Automation of Electronic Systems (TODAES), 5(2), 226–241.

    Article  Google Scholar 

  57. Wu, F., Xu, Q., Shao, S., & Tang, Y. (2018). Near-field self-interference suppression with subscriber beamforming in full-duplex communications. AEU-International Journal of Electronics and Communications, 70(12), 1676–1683.

    Google Scholar 

  58. Wu, F., Li, S., Shao, S., Li, C. X., Liu, D. L., & Tang, Y. (2018). Performance of auxiliary antenna-based self-interference cancellation in full-duplex radios. Science China Information Sciences, 61, 282–284.

    Article  Google Scholar 

  59. Peskir, G., & Shiryaev, A. (2006). Optimal stopping and free-boundary problems. Dordrecht: Springer.

    MATH  Google Scholar 

  60. Ferguson, T. S. (2012). Optimal stopping and applications. http://www.math.ucla.edu/tom/Stopping/Contents.html.

  61. U. Inc. (2017). Sara-n2 series. https://www.u-blox.com/en/product/sara-n2-series. NB-IoT module. Accessed by 2017.

Download references

Acknowledgements

The authors would thank Qingpeng Liang for his helpful advice. This work was supported by the National Natural Science Foundation of China (Grant Nos. 61531009, 61471108, 61701345), the National Major Projects (Grant No. 2016ZX03001009), and the Fundamental Research Funds for the Central Universities.

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61531009, 61471108, 61701345), the National Major Projects (Grant No. 2016ZX03001009), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Fei Wu.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F. An Energy-Saving Transmit Method Between Internet of Things Device and Base Station Under Fading Channel. Wireless Pers Commun 119, 1231–1249 (2021). https://doi.org/10.1007/s11277-021-08259-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08259-9

Keywords

Navigation