Skip to main content

Advertisement

Log in

An Efficient 2.45 GHz Spiral Rectenna Without a Matching Circuit for RF Energy Harvesting

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper presents an efficient spiral rectenna to be used for radio frequency energy harvesting application. This rectenna is simple, low cost and an efficient design exhibiting a power conversion efficiency of 85–88% at different conditions. The unique feature of the proposed model is, it eliminates the need for an external matching circuit thus reducing the complexity of the design, cost and is compact. Also, it has been analyzed that this rectenna exhibits good performance at different load conditions, input power levels and with different models of schottky diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Tesla, N. (1904). Experiments with alternate current of high potential and high frequency. New York: McGraw.

    Google Scholar 

  2. Tesla, N. (1904). The transmission of electric energy without wires. In the thirteenth anniversary number of the Electrical World and Engineer.

  3. Brown, W. C. (1984). The history of power transmission by radio waves. IEEE Transactions on MTT, 32(9), 1230–1242.

    Article  Google Scholar 

  4. Sleebi, K., Deepti, D., & Nasimuddin. (2018). RF energy harvesting systems: An overview and design issues. International Journal of RF and Microwave Computer Aided Engineering, 29(1), 1–15.

    Google Scholar 

  5. Shen, S., Chiu, C., & Murch, R. D. (2017). A dual-port triple-band L-probe microstrip patch rectenna for ambient RF energy harvesting. IEEE Antennas and Wireless Propagation Letters, 16, 3071–3074.

    Article  Google Scholar 

  6. Deborah, S., Victor-Jaya, N., & Jayanthy, T. (2019). A wide-beam, circularly polarized, three staged stepped impedance spiral antenna for direct matching to rectifier circuits. Review of Scientific Instruments, 90(5), 054704.

    Article  Google Scholar 

  7. Carreon-Bautista, S., Eladawy, A., Mohieldin, A. N., & Sanchez-Sinencio, E. (2014). Boost converter with dynamic input impedance matching for energy harvesting with multi-array thermoelectric generators. IEEE Transactions on Industrial Electronics, 61(10), 5345–5353.

    Article  Google Scholar 

  8. Jeong, J., & Jang, D. (2015). Design technique for harmonic-tuned RF power oscillators for high-efficiency operation. IEEE Transactions on Industrial Electronics, 62(1), 221–228.

    Article  Google Scholar 

  9. Kim, J., Kim, D.-H., & Park, Y.-J. (2015). Analysis of capacitive impedance matching networks for simultaneous wireless power transfer to multiple devices. IEEE Transactions on Industrial Electronics, 62(5), 2807–2813.

    Article  Google Scholar 

  10. Song, K., & Xue, Q. (2013). Ultra-wideband ring-cavity multiple-way parallel power divider. IEEE Transactions on Industrial Electronics, 60(10), 4737–4745.

    Article  Google Scholar 

  11. Rawat, K., & Ghannouchi, F. M. (2012). Design methodology for dual-band Doherty power amplifier with performance enhancement using dualband offset lines. IEEE Transactions on Industrial Electronics, 59(12), 4831–4842.

    Article  Google Scholar 

  12. Wang, X., Guan, X. K., & Fan, S. Q. (2011). ESD-protected power amplifier design in CMOS for highly reliable RFICs. IEEE Transactions on Industrial Electronics, 58(7), 2736–2743.

    Article  Google Scholar 

  13. Song, C., Huang, Y., Zhou, J., Carter, P., Yuan, S., Xu, Q., & Fei, Z. (2017). Matching network elimination in broadband rectennas for high-efficiency wireless power transfer and energy harvesting. IEEE Transactions on Industrial Electronics, 64(5), 3950–3961.

    Article  Google Scholar 

  14. Mansour, M., Polozec, X., & Kanaya, H. (2019). Enhanced broadband RF Differential Rectifier integrated with Archimedean Spiral antenna for Wireless energy harvesting applications’. Sensor, 19(3), 1–13.

    Article  Google Scholar 

  15. Niotaki, K., Georgiadis, A., Collado, A., & Vardakas, J. S. (2015). Dual-band resistance compression networks for improved rectifier performance. IEEE Transactions on Microwave Theory and Techniques, 62(12), 3512–3521.

    Article  Google Scholar 

  16. Han, Y., Leitermann, O., Jackson, D. A., Rivas, J. M., & Perreault, D. J. (2007). Resistance compression networks for radio-frequency power conversion. IEEE Transactions on Power Electronics, 22(1), 41–53.

    Article  Google Scholar 

  17. Paing, T., Shin, J., Zane, R., & Popovic, Z. (2008). Resistor emulation approach to low power RF energy harvesting. IEEE Transactions on Power Electronics, 23(3), 1494–1501.

    Article  Google Scholar 

  18. Marian, V., Allard, B., Vollaire, C., & Verdier, J. (2012). Strategy for microwave energy harvesting from ambient field or a feeding source. IEEE Transactions on Power Electronics, 27(11), 4481–4491.

    Article  Google Scholar 

  19. Song, C., et al. (2016). A novel six-band dual CP rectenna using improved impedance matching technique for ambient RF energy harvesting. IEEE Transactions on Antennas and Propagation, 64(7), 3160–3171.

    Article  Google Scholar 

  20. Sun, H., Guo, Y.-X., He, M., & Zhong, Z. (2012). Design of a high-efficiency 2.45-GHz rectenna for low-input-power energy harvesting. IEEE Antennas Wireless Propagation Letters, 11, 929–932.

    Article  Google Scholar 

  21. Hagerty, J. A., Helmbrecht, F. B., McCalpin, W. H., Zane, R., & Popovic, Z. B. (2004). Recycling ambientmicrowave energywith broad-band rectenna arrays. IEEE Transactions on Microwave Theory and Techniques, 52(3), 1014–1024.

    Article  Google Scholar 

  22. Antonio, A., Angel, P., Fernandez, J. M., Padilla, P., David, M., Manuel, S., & Jaime, E. (2019). RF energy harvesting system based on an Archimedean spiral antenna for low-power sensor applications. Sensors, 19(6), 1–18.

    Article  Google Scholar 

  23. Kuhn, V., Lahuec, C., Seguin, F., & Person, C. (2015). A multi-band stacked RF energy harvester with RF-to-DC efficiency up to 84%. IEEE Transactions on Microwave Theory and Techniques, 63(5), 1768–1778.

    Article  Google Scholar 

  24. Song, C., Huang, Y., Zhou, J., Zhang, J., Yuan, S., & Carter, P. (2015). A High-efficiency broadband rectenna for ambient wireless energy harvesting. IEEE Transactions on Antennas and Propagation, 63(8), 3486–3495.

    Article  MathSciNet  Google Scholar 

  25. Bouchouicha, D., Dupont, F., Latrach, M., & Ventura, L. (2010). Ambient RF energy harvesting. Renewable Energy and Power Quality Journal, 1.

  26. Mansour, M., Polozec, X., & Kanaya, H. (2019). Enhanced broadband RF differential rectifier integrated with archimedean spiral antenna for wireless energy harvesting applications. Sensor, 19(3), 1–13.

    Article  Google Scholar 

Download references

Funding

This research work has been funded by Anna Centenary Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah Sabhan.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabhan, D., Nesamoni, V.J. & Thangappan, J. An Efficient 2.45 GHz Spiral Rectenna Without a Matching Circuit for RF Energy Harvesting. Wireless Pers Commun 119, 713–726 (2021). https://doi.org/10.1007/s11277-021-08233-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08233-5

Keywords

Navigation