Skip to main content
Log in

Computing wave solutions and conservation laws of conformable time-fractional Gardner and Benjamin–Ono equations

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This paper presents travelling wave solutions for the nonlinear time-fractional Gardner and Benjamin–Ono equations via the exp(\(- \Phi ( \varepsilon ))\)-expansion approach. Specifically, both the models are studied in the sense of conformable fractional derivative. The obtained travelling wave solutions are structured in rational, trigonometric (periodic solutions) and hyperbolic functions. Further, the investigation of symmetry analysis and nonlinear self-adjointness for the governing equations are discussed. The exact derived solutions could be very significant in elaborating physical aspects of real-world phenomena. We have 2D and 3D illustrations for free choices of the physical parameter to understand the physical explanation of the problems. Moreover, the underlying equations with conformable derivative have been investigated using the new conservation theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D Baldwin, U Goktas, W Hereman, L Hong, R S Martino and J C Miller, J. Symbolic Comput. 37, 669 (2004)

    Article  MathSciNet  Google Scholar 

  2. Z Zhao, Y Zhang and W Rui, Appl. Math. Comput. 248, 456 (2014)

    MathSciNet  Google Scholar 

  3. A Bekir, O Guner and O Unsal, J. Comput. Nonlinear Dyn. 10, 021020 (2015)

    Article  Google Scholar 

  4. M Ekici, M Mirzazadeh, M Eslami, Q Zhou, S P Moshokoa, A Biswas and M Belic, Optik 127 (2016)

  5. M Eslami and H Rezazadeh, Calcolo 53, 475 (2016)

    Article  MathSciNet  Google Scholar 

  6. H Kim and R Sakthivel, Rep. Math. Phys. 70(1), 189 (2012)

    Article  Google Scholar 

  7. S Sahoo and S S Ray, Physica A 448, 265 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  8. M Inc, A Yusuf, A I Aliyu and D Baleanu, Opt. Quant. Electron. 50, 139 (2018)

    Article  Google Scholar 

  9. M Inc, A Yusuf and A I Aliyu, Opt. Quant. Electron. 49, 354 (2017)

    Article  Google Scholar 

  10. H Bulut, Y Pandir and S T Demiray, Wave Random Complex 24, 4 (2014)

    Article  Google Scholar 

  11. O Guner, Chin. Phys. B 24, 100201 (2015)

    Article  Google Scholar 

  12. S Guo, L Mei, Y Li and Y Sun, Phys. Lett. A 376(4), 407 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  13. N Kadkhoda and H Jafari, Adv. Diff. Equs 2019, 428 (2019)

    Article  Google Scholar 

  14. H M Baskonus, T A Sulaiman and H Bulut, Indian J. Phys. 91(10) (2017)

  15. H Bulut, T A Sulaiman, H M Baskonus and T Arturk, Opt. Quant. Electron. 50, 19 (2017)

    Article  Google Scholar 

  16. J-Y Yang and W-X Ma, Int. J. Mod. Phys. B 30, 1640028 (2016)

    Article  ADS  Google Scholar 

  17. F-H Qi, W-X Ma, Q-X Qu and P Wang, Int. J. Mod. Phys. B 34, 2050043 (2020)

    Article  ADS  Google Scholar 

  18. H Wang, Y-H Yang, W-X Ma and C Temuer, Mod. Phys. Lett. B 32, 1850376 (2018)

    Article  ADS  Google Scholar 

  19. Y-H Du, Y-S Yun and W-X Ma, Mod. Phys. Lett. B 33, 1950108 (2019)

    Article  ADS  Google Scholar 

  20. W-X Ma, Mod. Phys. Lett. B 36, 1950457 (2019)

    Article  Google Scholar 

  21. S Arshed, A Biswas, F B Majid, Q Zhou, S P Moshokoa and M Belic, Optik 170, 555 (2018)

    Article  ADS  Google Scholar 

  22. F Fredous, M G Hafez, A Biswas, M Ekici, Q Zhou, M Alfiras, S P Moshokoa and M Belic, Optik 178, 439 (2019)

    Article  ADS  Google Scholar 

  23. N Kadkhoda and H Jafari, Optik 139, 72 (2017)

  24. K Hosseini, A Bekir and R Ansari, Opt. Quant. Electron. 49, 131 (2017)

    Article  Google Scholar 

  25. M Kaplan, S Sait and A Bekir, J. Appl. Anal. Comput. 8 (2018)

  26. D Daghan and O Donmez, Braz. J. Phys. 46, 321 (2016)

    Article  ADS  Google Scholar 

  27. Y Pandir and H H Duzgun, Commun. Theor. Phys. 67, 9 (2017)

    Article  ADS  Google Scholar 

  28. T B Benjamin, J. Fluid Mech. 29(3) 1967

  29. H Ono, J. Phys. Soc. Japan 39(4), 1082 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  30. S Singh, K Sakkaravarthi, K Murugesan and R Sakthivel, arXiv:2004.09463 (2020)

  31. A-M Wazwaz, Int. J. Numer. Method Heat Fluid Flow 28(11) (2018)

  32. R Kumar, R K Gupta and S S Bhatia, Nonlinear Dyn. 83, 2103 (2016)

    Article  Google Scholar 

  33. D Lu and C Liu, Appl. Math. Comput. 217 (2010)

  34. J H Choi, H Kim and R Sakthivel, J. Math. Chem. 52, 2482 (2014)

    Article  MathSciNet  Google Scholar 

  35. A-M Wazwaz, Appl. Math. Lett. 88, 1 (2019)

    Article  MathSciNet  Google Scholar 

  36. A-M Wazwaz, J. Ocean Eng. Sci. 2, 1 (2017)

    Article  Google Scholar 

  37. A-M Wazwaz, J. Ocean Eng. Sc. 1, 181 (2016)

    Article  Google Scholar 

  38. A Kilbas, H Srivastava and J Trujillo, Theory and applications of fractional differential equations (North-Holland, New York, 2006)

    MATH  Google Scholar 

  39. K S Miller and B Ross, An introduction to the fractional calculus and fractional differential equations (Wiley-Blackwell, Hoboken, 1993)

    MATH  Google Scholar 

  40. I Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (Academic Press, Cambridge, 1998)

    MATH  Google Scholar 

  41. A Atangana and I Koca, Chaos Solitons Fractals 89, 447 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  42. M Caputo and M Fabrizio, Progr. Fract. Differ. Appl. 1(2), 73 (2015)

    Google Scholar 

  43. C-S Liu, Commun. Nonlinear Sci. Numer. Simul. 22(1) (2015)

  44. M D Ortigueira and J A T Machado, J. Comput. Phys. 293, 4 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  45. R Khalil, M A Horani, A Yousef and M Sababheh, J. Comput. Appl. Math. 264, 65 (2014)

    Article  MathSciNet  Google Scholar 

  46. T Abdeljawad, J. Comput. Appl. Math. 279, 57 (2015)

    Article  MathSciNet  Google Scholar 

  47. A E Ajou, M N Oqielat, Z Al-Zhour, S Kumar and S Momani, Chaos 29, 093102 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  48. H Jafari, N Kadkhoda and D Baleanu, arXiv:2006.08014 (2020)

  49. H Jafari, N Kadkhoda, M Azadi and M Yaghobi, Scientia Iranica 24(1), 302 (2017)

    Article  Google Scholar 

  50. H Jafari, N Kadkhoda and D Baleanu, Nonlinear Dyn. 81(3), 1569 (2015)

    Article  Google Scholar 

  51. E Noether, Mathematisch-Physikalische Kl. 2 (1918)

  52. N Ibragimov, J. Math. Anal. Appl. 333 , 311 (2007)

    Article  MathSciNet  Google Scholar 

  53. N Ibragimov, J. Phys. A 44 (2011)

  54. N Ibragimov, Arch. ALGA 7/8 (2011)

Download references

Acknowledgements

The authors are very grateful to the editor and the anonymous reviewer for providing valuable suggestions for the betterment of the manuscript. Sudhir Singh would like to thanks MHRD and National Institute of Technology, Tiruchirappalli, India for financial support through institute fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Sakthivel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Sakthivel, R., Inc, M. et al. Computing wave solutions and conservation laws of conformable time-fractional Gardner and Benjamin–Ono equations. Pramana - J Phys 95, 43 (2021). https://doi.org/10.1007/s12043-020-02070-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-02070-0

Keywords

PACS Nos

Navigation