Skip to main content
Log in

Characteristics of Quantum Plasmonic Waves Guided by a Symmetric Metal–Gap–Dielectric Nano-system

  • Original Article
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The guiding properties of a symmetric conductor–gap–dielectric system consists of a metal film symmetrically surrounded by media of two dielectrics, and is theoretically analyzed by using the quantum hydrodynamic model and Maxwell’s equations. We found that the quantum effects, including the Fermi pressure and the Bohm potential, facilitate the propagation of the hybrid surface waves at higher values of the wavenumber. The results show that the permittivity of the surrounding dielectric mediums and the geometric effects (namely, the thickness of the metal film and gap layers) significantly modify the basic behaviors of the hybrid surface waves. Our results provide a good understanding of the basic features of the wave propagation phenomenon in hybrid waveguide systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All required data are included in the manuscript.

Code Availability

The numerical analysis is done with Matlab software -version R2015b.

References

  1. Maier SA (2007) Plasmonics: fundamentals and applications. Springer Science & Business Media

  2. Pitarke JM, Silkin VM, Chulkov EV, Echenique PM (2006) Theory of surface plasmons and surface-plasmon polaritons. Rep Prog Phys 70(1):1

    Article  Google Scholar 

  3. Baltar HTMCM, Drozdowicz-Tomsia K, Goldys EM (2012) Propagating surface plasmons and dispersion relations for nanoscale multilayer metallic-dielectric films. Plasmonics—Principles and Applications, 135–156

  4. Li X, Gu Y, Luo R, Wang L, Gong Q (2013) Effects of dielectric anisotropy on surface plasmon polaritons in three-layer plasmonic nanostructures. Plasmonics 8(2):1043–1049

    Article  CAS  Google Scholar 

  5. Wang L, Gu Y, Hu X, Gong Q (2011) Long-range surface plasmon polariton modes with a large field localized in a nanoscale gap. Appl Phys B 104(4):919

    Article  CAS  Google Scholar 

  6. Burke JJ, Stegeman GI, Tamir T (1986) Surface-polariton-like waves guided by thin, lossy metal films. Phys Rev B 33(8):5186

    Article  CAS  Google Scholar 

  7. Alam MZ, Aitchison JS, Mojahedi M (2013) Theoretical analysis of hybrid plasmonic waveguide. IEEE J Sel Top Quantum Electron 19(3):4602008–4602008

    Article  Google Scholar 

  8. Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang X (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2(8):496–500

    Article  CAS  Google Scholar 

  9. Belan S, Vergeles S, Vorobev P (2013) Adjustable subwavelength localization in a hybrid plasmonic waveguide. Opt Express 21(6):7427–7438

    Article  CAS  Google Scholar 

  10. Salvador R, Martinez A, Garcia-Meca C, Ortuno R, Marti J (2008) Analysis of hybrid dielectric plasmonic waveguides. IEEE J Sel Top Quantum Electron 14(6):1496–1501

    Article  CAS  Google Scholar 

  11. Oulton RF, Bartal G, Pile DFP, Zhang X (2008) Confinement and propagation characteristics of subwavelength plasmonic modes. New J Phys 10(10):105018

    Article  Google Scholar 

  12. Avrutsky I, Soref R, Buchwald W (2010) Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap. Opt Express 18(1):348–363

    Article  CAS  Google Scholar 

  13. Mahmodi Moghadam M, Shahmansouri M, Farokhi B (2017) Propagational characteristics in a warm hybrid plasmonic waveguide. Phys Plasmas 24(12):122102

    Article  Google Scholar 

  14. Mahmodi Moghadam M, Shahmansouri M (2020) Theoretical study of surface waves in a magnetized conductor-gap-dielectric nano-structure. Phys Scr 95(8):085606

    Article  Google Scholar 

  15. Adato R, Guo J (2007) Characteristics of ultra-long range surface plasmon waves at optical frequencies. Opt Express 15(8):5008–5017

    Article  Google Scholar 

  16. Zografopoulos DC, Swillam M, Beccherelli R (2016) Hybrid plasmonic modulators and filters based on electromagnetically induced transparency. IEEE Photonics Technol Lett 28(7):818–821

    Article  CAS  Google Scholar 

  17. Zaki AO, Fouad NH, Zografopoulos DC, Beccherelli R, Swillam MA (2016). Low power compact hybrid plasmonic double microring electro-optical modulator. In Optical Components and Materials XIII (Vol 9744, p 97441K). International Society for Optics and Photonics

  18. Wei L, Aldawsari S, Liu WK, West BR (2014) Theoretical analysis of plasmonic modes in a symmetric conductor–gap–dielectric structure for nanoscale confinement. IEEE Photonics J 6(3):1–10

    Article  Google Scholar 

  19. Lazar M, Shukla PK, Smolyakov A (2007) Surface waves on a quantum plasma half-space. Phys Plasmas 14(12):124501

    Article  Google Scholar 

  20. Kumar P, Tiwari C (2010) High frequency oscillations in quantum plasma. In Journal of Physics: Conference Series (Vol 208, No 1, p 012051). IOP Publishing

  21. Jung YD, Hong WP (2013) Quantum and geometric effects on the symmetric and anti-symmetric modes of the surface plasma wave. Phys Lett A 377(7):560–563

    Article  CAS  Google Scholar 

  22. Moradi A (2015) Quantum effects on propagation of bulk and surface waves in a thin quantum plasma film. Phys Lett A 379(16–17):1139–1143

    Article  CAS  Google Scholar 

  23. Shahmansouri M (2015) The exchange-correlation effects on surface plasmon oscillations in semi-bounded quantum plasma. Phys Plasmas 22(9):092106

    Article  Google Scholar 

  24. Shahmansouri M, Misra AP (2016) Elliptically polarized electromagnetic waves in a magnetized quantum electron-positron plasma with effects of exchange-correlation. Phys Plasmas 23(7):072105

    Article  Google Scholar 

  25. Shahmansouri M, Mahmodi Moghadam M (2017) Quantum electrostatic surface waves in a hybrid plasma waveguide: Effect of nano-sized slab. Phys Plasmas 24(10):102107

    Article  Google Scholar 

  26. Manfredi G (2005) How to model quantum plasmas. Fields Inst Commun 46:263–287

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mehran Shahmansouri proposed the concept and supervised the physical interpretations. Mahboubeh Mahmodi Moghadam performed the calculations and analyzed the numerical data. Both the authors have discussed the results thoroughly and contributed to the writing and review of the manuscript.

Corresponding author

Correspondence to Mahboubeh Mahmoudi Moghadam.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghadam, M.M., Shahmansouri, M. Characteristics of Quantum Plasmonic Waves Guided by a Symmetric Metal–Gap–Dielectric Nano-system. Plasmonics 16, 1349–1355 (2021). https://doi.org/10.1007/s11468-021-01401-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01401-0

Keywords

Navigation