Skip to main content
Log in

Electrical Conductivity of Cryptocrystalline Forms of Silica

  • NANOMATERIALS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The electrical conductivity of natural samples of exogenous silicides has been studied. In the temperature range of 515−700 K, the conductivity increases from 1.1 × 10−7 to 1.3 × 10−6 S/cm, while the activation enthalpy of electrical transfer amounts to ΔHa = 0.48 ± 0.04 eV. Apparently, the electrical conductivity is caused by the migration of protons (according to the Grotthuss mechanism) in the aqueous solution present in capillary channels of silicides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. V. T. Frolov, Lithology (Izd-vo MGU, Moscow, 1992) [in Russian].

    Google Scholar 

  2. E. M. Spiridonov, V. M. Ladygin, D. Ya. Yanakieva, et al., Agates in Metavolcanics. Geological Conditions, Parameters and Time of Transformation of Volcanites into Mandelites with Agates, Ed. by V. Ya. Panchenko, “MOLNET,” Special issue of “Vestnik RFFI” (Moscow, 2014).

  3. P. P. Fedorov, V. A. Maslov, V. V. Voronov, et al., Nanosyst.: Phys., Chem., Math. 9 (5), 603 (2018). https://doi.org/10.17586/2220-8054-2018-9-5-603-608

    Article  Google Scholar 

  4. R. V. Gaynutdinov, V. V. Voronov, E. V. Chernova, et al., J. Surf. Invest. 14 (4), 762 (2020). https://doi.org/10.1134/S1027451020040084

  5. Water in Disperse Systems, Ed. by B. V. Deryagin (Khimiya, Moscow, 1989) [in Russian].

    Google Scholar 

  6. A. K. Ivanov-Shitz, N. I. Sorokin, P. P. Fedorov, and B. P. Sobolev, Sov. Phys. Solid State 25 (6), 1007 (1983).

    Google Scholar 

  7. G. Miehe and H. Graetsch, Eur. J. Mineral. 4, 693 (1992).

    Article  ADS  Google Scholar 

  8. A. K. Ivanov-Shitz and I. V. Murin, Solid-State Ionics, Vol. 2 (Izd-vo SPb Univ., St. Petersburg, 2010) [in Russian].

  9. I. D. Sedletskii, Colloidal Dispersed Mineralogy (Izd-vo AN SSSR, Moscow, 1945) [in Russian].

    Google Scholar 

  10. N. P. Yushkin and A. M. Askhabov, Nanomineralogy: Ultra- and Microdisperse State of Minerals (Nauka, St. Petersburg., 2005) [in Russian].

    Google Scholar 

  11. B. I. Vorozhtsov, Izv. Tomsk Politekh. Inst. 95, 314 (1958).

    Google Scholar 

  12. A. M. Hecht and E. Geissler, J. Colloid Interface Sci. 34, 32 (1970).

    Article  ADS  Google Scholar 

  13. A. N. Gubkin, Electrets (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  14. D. C. Freeman and D. N. Stamires, J. Chem. Phys. 35, 799 (1961).

    Article  ADS  Google Scholar 

  15. K. D. Kreuer, A. Rabenau, and W. Weppner, Ang. Chem. 21 (3), 208 (1982).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Higher Education and Science of the Russian Federation within the state assignment for the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences and the Prokhorov General Physics Institute of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Fedorov.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorokin, N.I., Gaynutdinov, R.V., Voronov, V.V. et al. Electrical Conductivity of Cryptocrystalline Forms of Silica. Crystallogr. Rep. 66, 126–129 (2021). https://doi.org/10.1134/S1063774521010181

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774521010181

Navigation