Skip to main content
Log in

Optimization of sol–gel based ZnO metal–semiconductor–metal UV detectors by Zr doping through sputtering method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, to improve the properties of ZnO-based metal–semiconductor–metal (MSM) UV detectors, the surface of ZnO thin films prepared by the sol–gel method is initially doped with Zr sputtering at different time intervals. The amount of Zr at the surface and its effect on the crystalline structure and the surface morphology are, respectively, evaluated through energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) analysis, and atomic force microscopy (AFM). Then, by creating electrodes on the surface, these layers are converted to MSM UV detectors and subjected to various sensor tests to assess their performance. The results of these tests show that the sensors, which are sputtered with Zr for 50 s under the experimental conditions in question, experience an increase in the photoresponsivity by about one order of magnitude while their rise time and recovery time decrease about 30%. Furthermore, the best repeatability of It curves and baseline stability in consecutive cycles are also related to these sensors. The experience also indicates that the use of sputtering method can be seriously considered to modify the surface of nanostructures used in the construction of sensors. This makes perfect sense because the surface plays a major role in the detection mechanisms in most light and gas sensors. It is noteworthy that this method can be used even to modify the properties of pre-made detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

source in the sensor predetermined location is measured by the MAESTRO power and energy meter with the low-power thermopile XLP12 (from gentec-eo Co.) before placing the sensor there. The amplifier (model PZD 350A from Trek Co.) has been used to provide the power of UV source. The wavelength band of the beam splitter is in the range of UV light

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F. Omnès, E. Monroy, E. Muñoz, J.-L.G. Reverchon, Nitride Mater. Dev. II Proc. SPIE 6473, 64730 (2007)

    Google Scholar 

  2. S. Khan, D. Newport, S. Le Calvé, Sensors 19, 5210 (2019)

    Google Scholar 

  3. Z. Xu, B.M. Sadler, IEEE Commun. Mag. 46, 67 (2008)

    Google Scholar 

  4. A.P. Cracknell, C.A. Varotsos, Int. J. Remote Sens. 35, 5566 (2014)

    Google Scholar 

  5. L. Sang, M. Liao, M. Sumiya, Sensors 13, 10482 (2013)

    Google Scholar 

  6. T. Zhai, X. Fang, M. Liao, X. Xu, H. Zeng, B. Yoshio, D. Golberg, Sensors 9, 6504 (2009)

    Google Scholar 

  7. Y. Zou, Y. Zhang, Y. Hu, H. Gu, Sensors 18, 1 (2018)

    Google Scholar 

  8. K. Liu, M. Sakurai, M. Aono, Sensors 10, 8604 (2010)

    Google Scholar 

  9. S.J. Young, L.W. Ji, R.W. Chuang, S.J. Chang, X.L. Du, Semicond. Sci. Technol. 21, 1507 (2006)

    ADS  Google Scholar 

  10. K.J. Chen, F.Y. Hung, S.J. Chang, S.J. Young, J. Alloys Compd. 479, 674 (2009)

    Google Scholar 

  11. S.J. Young, L.W. Jib, S.J. Chang, Y.K. Su, J. Cryst. Growth 293, 43 (2006)

    ADS  Google Scholar 

  12. S.Z. Umbaidilah, N.A.M. Asib, A.N. Afaah, M. Rusop, Z. Khusaimi, AIP Conf. Proc. (2019). https://doi.org/10.1063/1.5124668

    Article  Google Scholar 

  13. K.M. Sandeep, S. Bhat, S.M. Dharmaprakash, J. Phys. Chem. Solids 104, 36 (2017)

    ADS  Google Scholar 

  14. S. Singh, Optik (Stuttg). 127, 3523 (2016)

    ADS  Google Scholar 

  15. Z.N. Kayani, I. Shah, S. Riaz, S. Naseem, J. Mater. Sci. Mater. Electron. 28, 5953 (2017)

    Google Scholar 

  16. H.S. Al-Salman, M.J. Abdullah, J. Mater. Sci. Technol. 29, 1139 (2013)

    Google Scholar 

  17. X. Wang, K. Liu, X. Chen, B. Li, M. Jiang, Z. Zhang, H. Zhao, D. Shen, A.C.S. Appl, Mater. Interfaces 9, 5574 (2017)

    Google Scholar 

  18. L. Xu, G. Zheng, Y. Liu, J. Su, W. Kuang, W. Rao, Optik (Stuttg) 147, 6 (2017)

    ADS  Google Scholar 

  19. S. Roguai, A. Djelloul, Appl. Phys. A 126, 1 (2020)

    Google Scholar 

  20. L. Ben Saad, L. Soltane, F. Sediri, Russ. J. Phys. Chem. A 93, 2782 (2019)

    Google Scholar 

  21. D. Chakraborty, R. Gayen, S. Hussain, R. Bhar, A.K. Ghoshal, A.K. Pal, J. Phys. Conf. Ser. 390, 1 (2012)

    Google Scholar 

  22. A. Jamil, S. Fareed, N. Tiwari, C. Li, B. Cheng, X. Xu, M.A. Rafiq, Appl. Phys. A 125, 1 (2019)

    Google Scholar 

  23. K. Bahedia, M. Addoua, M. El Jouada, Z. Sofiania, S. Bayouda, B. Sahraoui, Z. Essaïdi, ICTON-MW (2008). https://doi.org/10.1109/ICTONMW.2008.4773058

    Article  Google Scholar 

  24. C.Y. Tsay, K.S. Fan, Mater. Trans. 49, 1900 (2008)

    Google Scholar 

  25. G.K. Paul, S. Bandyopadhyay, S.K. Sen, S. Sen, Mater. Chem. Phys. 79, 71 (2003)

    Google Scholar 

  26. M. Lv, X. Xiu, Z. Pang, Y. Dai, L. Ye, C. Cheng, S. Han, Thin Solid Films 516, 2017 (2008)

    ADS  Google Scholar 

  27. M. Lin, Y. Chang, M. Chen, C. Chu, J. Electrochem. Soc 158, 395 (2011)

    Google Scholar 

  28. S. Huber, C.C. Mardare, A.I. Mardare, C. Kleber, A.W. Hassel, RSC Adv. 9, 35579 (2019)

    ADS  Google Scholar 

  29. U. Demirkol, S. Pat, R. Mohammadigharehbagh, C. Musaoğlu, M. Özgür, S. Elmas, S. Özen, Ş Korkmaz, J. Mater. Sci. Mater. Electron. 29, 18098 (2018)

    Google Scholar 

  30. I. Khan, S. Khan, R. Nongjai, H. Ahmed, W. Khan, Opt. Mater. (Amst). 35, 1189 (2013)

    ADS  Google Scholar 

  31. N.C.S. Selvam, J.J. Vijaya, L.J. Kennedy, Ind. Eng. Chem. Res. 51, 16333 (2012)

    Google Scholar 

  32. J. Zhang, D. Gao, G. Yang, J. Zhang, Z. Shi, Z. Zhang, Z. Zhu, D. Xue, Nanoscale Res. Lett. 6, 1 (2011)

    ADS  Google Scholar 

  33. V. Gokulakrishnan, S. Parthiban, K. Jeganathan, K. Ramamurthi, Appl. Surf. Sci. 257, 9068 (2011)

    ADS  Google Scholar 

  34. R. Khokhra, B. Bharti, H.-N. Lee, R. Kumar, Sci. Rep 7, 15032 (2017)

    ADS  Google Scholar 

  35. Z. Huafu, L. Chengxin, L. Hanfa, Y. Changkun, J. Semicond. 30, 043004–043011 (2009)

    ADS  Google Scholar 

  36. S. Herodotou, R.E. Treharne, K. Durose, G.J. Tatlock, R.J. Potter, Materials 8, 7230 (2015)

    ADS  Google Scholar 

  37. L. Mao-Shui, P. Zhi-Yong, X. Xian-Wu, D. Ying, H. Sheng-Hao, C. Phys. 16, 548 (2007)

    Google Scholar 

  38. Z. Ye, H. Lu, Y. Geng, Y. Gu, Z. Xie, Y. Zhang, Q. Sun, S. Ding, D. Zhang, Nanoscale Res. Lett. 8, 1 (2013)

    Google Scholar 

  39. T. Minami, H. Sato, H. Nanto, S. Takata, Jpn. J. Appl. Phys. 24, 781 (1985)

    ADS  Google Scholar 

  40. M.C. Jun, S.U. Park, J.H. Koh, Nanoscale Res. Lett. 7, 1 (2012)

    ADS  Google Scholar 

  41. Y.-L. Chu et al., J. Electrochem. Soc. 167, 067506 (2020)

    ADS  Google Scholar 

  42. M.H. Mamat, Z. Khusaimi, M.Z. Musa, M.F. Malek, M. Rusop, Sens. Actuat. A Phys 171, 241 (2011)

    Google Scholar 

  43. S. Safa, R. Sarraf-Mamoory, R. Azimirad, Physica E 57, 155 (2014)

    ADS  Google Scholar 

  44. H.A. Alshamarti, A.H.O. Alkhayatt, Mater. Sci. Semicond. Process. 114, 105068 (2020)

    Google Scholar 

  45. S.-J. Young, Y.-H. Liu, M.D.N.I. Shiblee, K. Ahmed, L.-T. Lai, L. Nagahara, T. Thundat, T. Yoshida, S. Arya, H. Furukawa, A. Khosla, A.C.S. Appl, Electron. Mater. 2, 3522 (2020)

    Google Scholar 

  46. Y.-L. Chu, S.-J. Young, L.-W. Ji, I.-T. Tang, T.-T. Chu, Sensors 20, 3861 (2020)

    Google Scholar 

  47. B.D. Boruah, D.B. Ferry, A. Mukherjee, A. Misra, Nanotechnology 26, 235703 (2015)

    ADS  Google Scholar 

  48. B.D. Boruah, Nanoscale Adv. 1, 2059 (2019)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Asl Soleimani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madani-Mashaei, N., Soleimani, E.A. & Shirvani-Mahdavi, H. Optimization of sol–gel based ZnO metal–semiconductor–metal UV detectors by Zr doping through sputtering method. Appl. Phys. A 127, 204 (2021). https://doi.org/10.1007/s00339-021-04352-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04352-9

Keywords

Navigation