Skip to main content
Log in

Dielectric behavior and complex impedance analysis of Ti-doped Mg0.5Cu0.5Mn0.4Fe1.6O4 ferrites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Pure sample Mg0.5Cu0.5Fe2O4 (MCF) and composition in chemical formula Mg0.5Cu0.5Mn0.4TixFe1.6-xO4 (0.0 ≤ x ≤ 0.6) were prepared by the solid-state reaction method. Structural analysis showed a single-phase spinel structure till x = 0.3. The average grain size was found in the range 71–141 nm. The lattice parameter of spinel structure depends on the complex interplay between ions size, and their distribution in tetrahedral (A) and octahedral [B] sites. Electrical properties were studied in the frequency range of 20 Hz–5 MHz at different temperatures. The process of dielectric polarization in ferrites takes place through the effect of hopping between Fe3+ ↔ Mn3+. Temperature and frequency dependence of AC conductivity were explained based on the Verwey mechanism. The low values of dielectric loss for doped samples with (x = 0.15 and 0.30) confirming their applicability in high-frequency memory devices. Impedance study using Cole–Cole representation revealed the appearance of a single semicircle. The bulk conductivity (σdc) evaluated from the complex impedance spectrum shows a smallest value of the activation energy for sample x = 0.6, while the sample x = 0.3 represents the largest value. Impedance parameters values such as resistance (Rg), capacitance (Cg), and activation energy (τg) for the samples at different temperatures were deduced. The grain resistance depends on the titanium concentration, while the activation energy decreases with increased temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Wang, D. Toledo, E. Zhang, M. Telusma, D. McDaniel, P. Liang, S. Khizroev, J. Magn. Magn. Mater. 516, 167329 (2020)

    Article  Google Scholar 

  2. E.N. Lysenko, S.A. Nikolaeva, A.P. Surzhikov, S.A. Ghyngazov, I.V. Plotnikova, V.A. Zhuravlev, E.V. Zhuravleva, Ceram. Inter. 45, 20148 (2019)

    Article  Google Scholar 

  3. M.Z. Khan, K. Nadeem, F. Zeb, H. Abbas, B. Ali, I. Letofsky-Papst, J. Solid State Sci. 103, 106186 (2020)

    Article  Google Scholar 

  4. G.R. Gajula, L.R. Buddiga, J. Magn. Magn. Mater. 494, 165822 (2020)

    Article  Google Scholar 

  5. R. Rathi, R. Neogi, Materials Today: Proceedings 3, 2437 (2016)

    Google Scholar 

  6. R.S. Pandav, D.R. Patil, R.P. Patil, P.P. Hankare, J. Magn. Magn. Mater. 405, 259 (2016)

    Article  ADS  Google Scholar 

  7. M.R. Eraky, S.M. Attia, J. Phys. B 462, 97 (2015)

    Article  Google Scholar 

  8. E. Ateia, M.A. Ahmed, R.M. Ghouniem, J. Solid Stat Sci. 31, 99 (2014)

    Article  ADS  Google Scholar 

  9. M.M. Hossen, S. Nasrin, M.B. Hossen, Phys. B 599, 412456 (2020)

    Article  Google Scholar 

  10. A.P. Amaliya, S. Anand, S. Pauline, J. Magn. Magn. Mater. 467, 14 (2018)

    Article  ADS  Google Scholar 

  11. W.Q. Guo, S. Malus, D.H. Ryan, Z. Altounian, J. Phys. Conds. Matt. 11, 6337 (1999)

    Article  ADS  Google Scholar 

  12. B. Karimi, M.H. Habibi, J. Ind. Eng. Chem. 80, 292 (2019)

    Article  Google Scholar 

  13. E.J.W. Verwey, E.L. Heilmann, J. Chem. Phys. 15, 174 (1947)

    Article  ADS  Google Scholar 

  14. M. Kaiser, Phys. Status Solidi (a) 201, 3148 (2004)

    Article  ADS  Google Scholar 

  15. X. Liang, Y. Zhong, S. Zhu, H. He, P. Yuan, J. Zhu, Z. Jian, J. Solid State Sci. 15, 115 (2013)

    Article  ADS  Google Scholar 

  16. M. Kaiser, Phys. B 407, 606 (2012)

    Article  ADS  Google Scholar 

  17. B.D. Cullity, Elements of X-Ray Diffraction, 99 (Addison Wesley Pub. Co. Inc., Boston, 1967), p. 96

    Google Scholar 

  18. M. Kaiser, J. Alloys Compds 719, 446 (2017)

    Article  Google Scholar 

  19. K.M. Batoo, S. Kumar, C.G. Lee Alimuddin, Curr. Appl. Phys. 9, 1397 (2009)

    Article  ADS  Google Scholar 

  20. S. Duhan, S. Sanghi, A. Agarwal, A. Sheoran, S. Rani, J. Phys. B 404, 1648 (2009)

    Article  Google Scholar 

  21. S. Khadhraoui, A. Triki, S. Hcini, S. Zemni, M. Oumezzine, J. Alloys Compds 574, 290 (2013)

    Article  Google Scholar 

  22. F.A. Radwan, M.A. Ahmed, G. Abdelatif, J. Phys. Chem. Solid 64, 2465 (2003)

    Article  ADS  Google Scholar 

  23. K.P. Chae, Y.B. Lee, J.G. Lee, S.H. Lee, J. Magn. Magn. Mater. 220, 59 (2000)

    Article  ADS  Google Scholar 

  24. H. Rahmouni, M. Nouiri, R. Jemai, N. Kallel, F. Rzigua, A. Selmi, K. Khirouni, S. Alaya, J. Magn. Magn. Mater. 316, 23 (2007)

    Article  ADS  Google Scholar 

  25. G.R. Gajula, L.R. Buddiga, N. Vattikunta, J. Mater. Chem. Phys. 230, 331 (2019)

    Article  Google Scholar 

  26. W.I. Archer, R.D. Armstrong, Electrochemistry. Chem. Soc. Special. Period. Rep. 7, 157–202 (1980)

    Google Scholar 

  27. M. Chawla, N. Shekhawat, S. Aggarwal, A. Sharma, K.G.M. Nair, J. Appl. Phys. 115, 184104 (2014)

    Article  ADS  Google Scholar 

  28. M.P. Gutierrez-Amadov, R. Valenzuela, Mater. Res. Soc. Symp. Proc. 699, 3131–3135 (2001)

    Google Scholar 

  29. K.C.B. Naidu, S. RoopasKiran, W. Madhuri, J. Mater. Res. Bull. 89, 125 (2017)

    Article  Google Scholar 

  30. E. Oumezzine, S. Hconi, F.I.H. Rhouma, M. Oumezzine, J. Alloys Compds 726, 187 (2017)

    Article  Google Scholar 

  31. M.A. Dar, K. Majid, K.M. Batoo, R.K. Kontnala, J. Alloys Compds. 632, 307 (2015)

    Article  Google Scholar 

  32. V. Khopkar, B. Sahoo, J. Phys. Chem. Chem. Phys. 22, 2986 (2020)

    Article  Google Scholar 

  33. N.S. Kumar, R.P. Suvarna, K.C.B. Naidu, Mater. Sci. Eng. B 242, 23 (2019)

    Article  Google Scholar 

  34. B. Ramesh, S. Ramesh, R.V. Kumar, M.L. Rao, J. Alloys Compds. 513, 289 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kaiser.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaiser, M., Hashhash, A. & Hassan, H.E. Dielectric behavior and complex impedance analysis of Ti-doped Mg0.5Cu0.5Mn0.4Fe1.6O4 ferrites. Appl. Phys. A 127, 198 (2021). https://doi.org/10.1007/s00339-021-04318-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04318-x

Navigation