To read this content please select one of the options below:

A comprehensive review on mixed convection for various patterns of kinematically and thermally induced scenarios within cavities

Leo Lukose (Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, India)
Tanmay Basak (Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, India)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 25 February 2021

Issue publication date: 26 August 2021

256

Abstract

Purpose

The purpose of this paper is to address various works on mixed convection and proposes 10 unified models (Models 1–10) based on various thermal and kinematic conditions of the boundary walls, thermal conditions and/ or kinematics of objects embedded in the cavities and kinematics of external flow field through the ventilation ports. Experimental works on mixed convection have also been addressed.

Design/methodology/approach

This review is based on 10 unified models on mixed convection within cavities. Models 1–5 involve mixed convection based on the movement of single or double walls subjected to various temperature boundary conditions. Model 6 elucidates mixed convection due to the movement of single or double walls of cavities containing discrete heaters at the stationary wall(s). Model 7A focuses mixed convection based on the movement of wall(s) for cavities containing stationary solid obstacles (hot or cold or adiabatic) whereas Model 7B elucidates mixed convection based on the rotation of solid cylinders (hot or conductive or adiabatic) within the cavities enclosed by stationary or moving wall(s). Model 8 is based on mixed convection due to the flow of air through ventilation ports of cavities (with or without adiabatic baffles) subjected to hot and adiabatic walls. Models 9 and 10 elucidate mixed convection due to flow of air through ventilation ports of cavities involving discrete heaters and/or solid obstacles (conductive or hot) at various locations within cavities.

Findings

Mixed convection plays an important role for various processes based on convection pattern and heat transfer rate. An important dimensionless number, Richardson number (Ri) identifies various convection regimes (forced, mixed and natural convection). Generalized models also depict the role of “aiding” and “opposing” flow and combination of both on mixed convection processes. Aiding flow (interaction of buoyancy and inertial forces in the same direction) may result in the augmentation of the heat transfer rate whereas opposing flow (interaction of buoyancy and inertial forces in the opposite directions) may result in decrease of the heat transfer rate. Works involving fluid media, porous media and nanofluids (with magnetohydrodynamics) have been highlighted. Various numerical and experimental works on mixed convection have been elucidated. Flow and thermal maps associated with the heat transfer rate for a few representative cases of unified models [Models 1–10] have been elucidated involving specific dimensionless numbers.

Originality/value

This review paper will provide guidelines for optimal design/operation involving mixed convection processing applications.

Keywords

Acknowledgements

Authors would like to thank anonymous reviewers for critical comments and suggestions which improved the quality of the manuscript.

Citation

Lukose, L. and Basak, T. (2021), "A comprehensive review on mixed convection for various patterns of kinematically and thermally induced scenarios within cavities", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 31 No. 9, pp. 2879-2939. https://doi.org/10.1108/HFF-07-2020-0399

Publisher

:

Emerald Publishing Limited

Copyright © 2020, Emerald Publishing Limited

Related articles