Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Single-particle tracking photoactivated localization microscopy of membrane proteins in living plant tissues

Abstract

Super-resolution microscopy techniques have pushed the limit of optical imaging to unprecedented spatial resolutions. However, one of the frontiers in nanoscopy is its application to intact living organisms. Here we describe the implementation and application of super-resolution single-particle tracking photoactivated localization microscopy (sptPALM) to probe single-molecule dynamics of membrane proteins in live roots of the model plant Arabidopsis thaliana. We first discuss the advantages and limitations of sptPALM for studying the diffusion properties of membrane proteins and compare this to fluorescence recovery after photobleaching (FRAP) and fluorescence correlation spectroscopy (FCS). We describe the technical details for handling and imaging the samples for sptPALM, with a particular emphasis on the specificity of imaging plant cells, such as their thick cell walls or high degree of autofluorescence. We then provide a practical guide from data collection to image analyses. In particular, we introduce our sptPALM_viewer software and describe how to install and use it for analyzing sptPALM experiments. Finally, we report an R statistical analysis pipeline to analyze and compare sptPALM experiments. Altogether, this protocol should enable plant researchers to perform sptPALM using a benchmarked reproducible protocol. Routinely, the procedure takes 3–4 h of imaging followed by 3–4 d of image processing and data analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of sptPALM.
Fig. 2: Comparison of the typical dynamic range of FRAP, FCS, sptPALM and SMdM.
Fig. 3: Coverslip cleaning and sample preparation.
Fig. 4: sptPALM track acquisition.
Fig. 5: Track reconstruction using MTT.
Fig. 6: MSD and diffusion analysis using the sptPALM_viewer software.
Fig. 7: MSD and diffusion results from the sptPALM_viewer.
Fig. 8: Mixture modeling reveals two latent subpopulations of mEos2-PHEVECT2 molecules.

Similar content being viewed by others

Data availability

All the raw data used to generate Figs. 48 and Extended Data Figs. 13 are available at http://bioserv.cbs.cnrs.fr/DOWNLOAD/sptPALM_data/.

Code availability

The code used for the analysis of TrackMate or MTT data have been uploaded to https://github.com/jbfiche/sptPALM/, and explanations on how to run an analysis can be found in the README.md file. A standalone application and a test set are available from http://bioserv.cbs.cnrs.fr/DOWNLOAD/sptPALM_data/. Additional codes (including FIJI plugins and R code for the statistics) as well as data used for the figures are accessible from http://bioserv.cbs.cnrs.fr/DOWNLOAD/sptPALM_data/. Additional advice on how to use them can be obtained from the authors upon reasonable request.

References

  1. Jacobson, K., Liu, P. & Lagerholm, B. C. The lateral organization and mobility of plasma membrane components. Cell 177, 806–819 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jaillais, Y. & Ott, T. The nanoscale organization of the plasma membrane and its importance in signaling: a proteolipid perspective. Plant Physiol. 182, 1682–1696 (2020).

  3. Grossmann, G. et al. Green light for quantitative live-cell imaging in plants. J. Cell Sci. 131, jcs209270 (2018).

  4. Donaldson, L. Autofluorescence in plants. Molecules 25, 2393 (2020).

  5. Wang, L., Xue, Y., Xing, J., Song, K. & Lin, J. Exploring the spatiotemporal organization of membrane proteins in living plant cells. Ann. Rev. Plant Biol. 69, 525–551 (2018).

    Article  CAS  Google Scholar 

  6. Cui, Y. et al. Single-particle tracking for the quantification of membrane protein dynamics in living plant cells. Mol. Plant 11, 1315–1327 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, L. et al. Spatiotemporal dynamics of the BRI1 receptor and its regulation by membrane microdomains in living Arabidopsis cells. Mol. Plant 8, 1334–1349 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, X. et al. Single-molecule fluorescence imaging to quantify membrane protein dynamics and oligomerization in living plant cells. Nat. Protoc. 10, 2054–2063 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Hao, H. et al. Clathrin and membrane microdomains cooperatively regulate RbohD dynamics and activity in Arabidopsis. Plant Cell 26, 1729–1745 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, X. et al. Single-molecule analysis of PIP2;1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation. Plant Cell 23, 3780–3797 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, Q. et al. Single-particle analysis reveals shutoff control of the Arabidopsis ammonium transporter AMT1;3 by clustering and internalization. Proc. Natl Acad. Sci. USA 110, 13204–13209 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McKenna, J. F. et al. The cell wall regulates dynamics and size of plasma-membrane nanodomains in Arabidopsis. Proc. Natl Acad. Sci. USA 116, 12857–12862 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Martiniere, A. et al. Cell wall constrains lateral diffusion of plant plasma-membrane proteins. Proc. Natl Acad. Sci. USA 109, 12805–12810 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Platre, M. P. et al. Developmental control of plant Rho GTPase nano-organization by the lipid phosphatidylserine. Science 364, 57–62 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Martiniere, A. et al. Osmotic stress activates two reactive oxygen species pathways with distinct effects on protein nanodomains and diffusion. Plant Physiol. 179, 1581–1593 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hosy, E., Martiniere, A., Choquet, D., Maurel, C. & Luu, D. T. Super-resolved and dynamic imaging of membrane proteins in plant cells reveal contrasting kinetic profiles and multiple confinement mechanisms. Mol. Plant 8, 339–342 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Simon, M. L. et al. A PtdIns(4)P-driven electrostatic field controls cell membrane identity and signalling in plants. Nat. Plants 2, 16089 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, X., Xing, J., Qiu, Z., He, Q. & Lin, J. Quantification of membrane protein dynamics and interactions in plant cells by fluorescence correlation spectroscopy. Mol. Plant 9, 1229–1239 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Gronnier, J. et al. Structural basis for plant plasma membrane protein dynamics and organization into functional nanodomains. eLife 6, e26404 (2017).

  20. Perraki, A. et al. REM1.3’s phospho-status defines its plasma membrane nanodomain organization and activity in restricting PVX cell-to-cell movement. PLoS Pathog. 14, e1007378 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Smokvarska, M. et al. A plasma membrane nanodomain ensures signal specificity during osmotic signaling in plants. Curr. Biol. 30, 4654–4664 (2020).

  22. Manley, S. et al. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods 5, 155–157 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Baddeley, D. & Bewersdorf, J. Biological insight from super-resolution microscopy: what we can learn from localization-based images. Annu. Rev. Biochem. 87, 965–989 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Thompson, R. E., Larson, D. R. & Webb, W. W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schermelleh, L. et al. Super-resolution microscopy demystified. Nat. Cell Biol. 21, 72–84 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Li, Y. et al. Real-time 3D single-molecule localization using experimental point spread functions. Nat. Methods 15, 367–369 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Siemons, M. et al. Comparing strategies for deep astigmatism-based single-molecule localization microscopy. Biomed. Opt. Express 11, 735–751 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Izeddin, I. et al. PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking. Opt. Express 20, 4957–4967 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Shechtman, Y., Sahl, S. J., Backer, A. S. & Moerner, W. E. Optimal point spread function design for 3D imaging. Phys. Rev. Lett. 113, 133902 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang, X. et al. Phosphorylation-mediated dynamics of nitrate transceptor NRT1.1 regulate auxin flux and nitrate signaling in lateral root growth. Plant Physiol. 181, 480–498 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xing, J. et al. Secretion of phospholipase Dδ functions as a regulatory mechanism in plant innate immunity. Plant Cell 31, 3015–3032 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao, Y., Man, Y., Wen, J., Guo, Y. & Lin, J. Advances in imaging plant cell walls. Trends Plant Sci. 24, 867–878 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, X., Cui, Y., Yu, M. & Lin, J. Single-molecule techniques for imaging exo-endocytosis coupling in cells. Trends Plant Sci. 24, 879–880 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Yu, M. et al. The dynamics and endocytosis of Flot1 protein in response to flg22 in Arabidopsis. J. Plant Physiol. 215, 73–84 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Wudick, M. M. et al. Subcellular redistribution of root aquaporins induced by hydrogen peroxide. Mol. Plant 8, 1103–1114 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Cui, Y. et al. Sterols regulate endocytic pathways during flg22-induced defense responses in Arabidopsis. Development 145, dev165688 (2018).

  39. Gronnier, J. et al. FERONIA regulates FLS2 plasma membrane nanoscale dynamics to modulate plant immune signaling. Preprint at https://www.biorxiv.org/content/10.1101/2020.07.20.212233v2 (2020).

  40. Johnson, A. & Vert, G. Single event resolution of plant plasma membrane protein endocytosis by TIRF microscopy. Front. Plant Sci. 8, 612 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Johnson, A. et al. Experimental toolbox for quantitative evaluation of clathrin-mediated endocytosis in the plant model Arabidopsis. J. Cell Sci. 133, jcs248062 (2020).

  42. Konopka, C. A., Backues, S. K. & Bednarek, S. Y. Dynamics of Arabidopsis dynamin-related protein 1C and a clathrin light chain at the plasma membrane. Plant Cell 20, 1363–1380 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Konopka, C. A. & Bednarek, S. Y. Variable-angle epifluorescence microscopy: a new way to look at protein dynamics in the plant cell cortex. Plant J. 53, 186–196 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Wan, Y., Xue, Y., Li, R. & Lin, J. Application of variable angle total internal reflection fluorescence microscopy to investigate protein dynamics in intact plant cells. Methods Mol. Biol. 1363, 123–132 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Serge, A., Bertaux, N., Rigneault, H. & Marguet, D. Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat. Methods 5, 687–694 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Rouger, V. et al. Mapping molecular diffusion in the plasma membrane by multiple-target tracing (MTT). J. Vis. Exp. e3599 (2012).

  47. Durand-Smet, P., Spelman, T. A., Meyerowitz, E. M. & Jönsson, H. Cytoskeletal organization in isolated plant cells under geometry control. Proc. Natl Acad. Sci. USA 117, 17399–17408 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Los, G. V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Chen, J. et al. Single-molecule dynamics of enhanceosome assembly in embryonic stem cells. Cell 156, 1274–1285 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Holcman, D. et al. Single particle trajectories reveal active endoplasmic reticulum luminal flow. Nat. Cell Biol. 20, 1118–1125 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jin, D. et al. Nanoparticles for super-resolution microscopy and single-molecule tracking. Nat. Methods 15, 415–423 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Banaz, N., Mäkelä, J. & Uphoff, S. Choosing the right label for single-molecule tracking in live bacteria: side-by-side comparison of photoactivatable fluorescent protein and Halo tag dyes. J. Phys. D Appl. Phys. 52, 064002 (2019).

    Article  PubMed  Google Scholar 

  53. Varela, J. A. et al. Single nanoparticle tracking of N-methyl-d-aspartate receptors in cultured and intact brain tissue. Neurophotonics 3, 041808 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Varela, J. A. et al. Targeting neurotransmitter receptors with nanoparticles in vivo allows single-molecule tracking in acute brain slices. Nat. Commun. 7, 10947 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Freeman, S. A. et al. Transmembrane pickets connect cyto- and pericellular skeletons forming barriers to receptor engagement. Cell 172, 305–317 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Groc, L. et al. Surface trafficking of neurotransmitter receptor: comparison between single-molecule/quantum dot strategies. J. Neurosci. 27, 12433–12437 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu, H. et al. Visualizing long-term single-molecule dynamics in vivo by stochastic protein labeling. Proc. Natl Acad. Sci. USA 115, 343–348 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Grimm, J. B. et al. Bright photoactivatable fluorophores for single-molecule imaging. Nat. Methods 13, 985–988 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Iwatate, R. J. et al. Covalent self-labeling of tagged proteins with chemical fluorescent dyes in BY-2 Cells and Arabidopsis seedlings. Plant Cell 32, 3081–3094 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lippincott-Schwartz, J., Altan-Bonnet, N. & Patterson, G. H. Photobleaching and photoactivation: following protein dynamics in living cells. Nat. Cell Biol. 5, S7–S14 (2003).

    Google Scholar 

  61. Kang, M., Day, C. A., Kenworthy, A. K. & DiBenedetto, E. Simplified equation to extract diffusion coefficients from confocal FRAP data. Traffic 13, 1589–1600 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wawrezinieck, L., Rigneault, H., Marguet, D. & Lenne, P. F. Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys. J. 89, 4029–4042 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xiang, L., Chen, K., Yan, R., Li, W. & Xu, K. Single-molecule displacement mapping unveils nanoscale heterogeneities in intracellular diffusivity. Nat. Methods 17, 524530 (2020).

  64. Lenne, P. F. et al. Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J. 25, 3245–3256 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rose, M., Hirmiz, N., Moran-Mirabal, J. M. & Fradin, C. Lipid diffusion in supported lipid bilayers: a comparison between line-scanning fluorescence correlation spectroscopy and single-particle tracking. Membranes 5, 702–721 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hosy, E., Martiniere, A., Choquet, D., Maurel, C. & Luu, D. T. Super-resolved and dynamic imaging of membrane proteins in plant cells reveal contrasting kinetic profiles and multiple confinement mechanisms. Mol. Plant 8, 339–342 (2014).

  67. Sibarita, J. B. High-density single-particle tracking: quantifying molecule organization and dynamics at the nanoscale. Histochem. Cell Biol. 141, 587–595 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. McKinney, S. A., Murphy, C. S., Hazelwood, K. L., Davidson, M. W. & Looger, L. L. A bright and photostable photoconvertible fluorescent protein. Nat. Methods 6, 131–133 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang, M. et al. Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat. Methods 9, 727–729 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. De Zitter, E. et al. Mechanistic investigation of mEos4b reveals a strategy to reduce track interruptions in sptPALM. Nat. Methods 16, 707–710 (2019).

    Article  PubMed  Google Scholar 

  71. Subach, F. V., Patterson, G. H., Renz, M., Lippincott-Schwartz, J. & Verkhusha, V. V. Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells. J. Am. Chem. Soc. 132, 6481–6491 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Durisic, N., Laparra-Cuervo, L., Sandoval-Alvarez, A., Borbely, J. S. & Lakadamyali, M. Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate. Nat. Methods 11, 156–162 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Dahlberg, P. D. et al. Identification of PAmKate as a red photoactivatable fluorescent protein for cryogenic super-resolution imaging. J. Am. Chem. Soc. 140, 12310–12313 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hussein, W. & Berlin, S. Red photoactivatable genetic optical-indicators. Front. Cell. Neurosci. 14, 113 (2020).

  75. van de Linde, S. Single-molecule localization microscopy analysis with ImageJ. J. Phys. D. Appl. Phys. 52, 203002 (2019).

    Article  Google Scholar 

  76. Tinevez, J. Y. et al. TrackMate: an open and extensible platform for single-particle tracking. Methods 115, 80–90 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kao, H. P. & Verkman, A. S. Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position. Biophys. J. 67, 1291–1300 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gebhardt, J. C. M. et al. Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat. Methods 10, 421–426 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Izeddin, I. et al. Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus. eLife 3, e02230 (2014).

  82. Kusumi, A., Sako, Y. & Yamamoto, M. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J. 65, 2021–2040 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wieser, S. & Schutz, G. J. Tracking single molecules in the live cell plasma membrane-do’s and don’t’s. Methods 46, 131–140 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Michalet, X. Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium. Phys. Rev. E 82, 041914 (2010).

    Article  Google Scholar 

  85. Deschout, H. et al. Precisely and accurately localizing single emitters in fluorescence microscopy. Nat. Methods 11, 253–266 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Reynolds, D. A. Gaussian mixture models. in Encyclopedia of Biometrics (eds Li, S.Z. & Jain, A. K.) (Springer, 2009).

  87. Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Series B Stat. Methodol. 39, 1–22 (1977).

    Google Scholar 

  88. Azzalini, A. A class of distributions which includes the normal ones. Scand. J. Stat. 12, 171–178 (1985).

    Google Scholar 

  89. Prates, M. O., Lachos, V. H. & Barbosa Cabral, C. R. mixsmsn: fitting finite mixture of scale mixture of skew-normal distributions. J. Stat. Soft. https://doi.org/10.18637/jss.v054.i12 (2013).

  90. Dowle, M. et al. Package ‘data. table’. Extension of ‘data. frame (https://cran.r-project.org/web/packages/data.table/index.html, 2019).

  91. Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. R J. 8, 289–317 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Mattheyses, A. L., Shaw, K. & Axelrod, D. Effective elimination of laser interference fringing in fluorescence microscopy by spinning azimuthal incidence angle. Micros. Res. Tech. 69, 642–647 (2006).

    Article  Google Scholar 

  93. Fiolka, R., Belyaev, Y., Ewers, H. & Stemmer, A. Even illumination in total internal reflection fluorescence microscopy using laser light. Micros. Res. Tech. 71, 45–50 (2008).

    Article  CAS  Google Scholar 

  94. Levet, F. et al. SR-Tesseler: a method to segment and quantify localization-based super-resolution microscopy data. Nat. Methods 12, 1065–1071 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Milo, R. & Phillips, R. What are the time scales for diffusion in cells? in Cell Biology by the Numbers 256–260 (Garland Science, 2016).

Download references

Acknowledgements

We acknowledge the contribution of SFR Biosciences (UMS3444/CNRS, US8/Inserm, ENS de Lyon, UCBL) facilities: C. Lionnet, E. Chattre and J. Brocard. We thank A. Johnson and G. Vert for their initial input and advice in setting up TIRF microscopy. Y.J. is funded by ERC no. 3363360-APPL under FP/2007-2013 and ANR caLIPSO (ANR18-CE13-0025). Y.J. and A.M. are funded by the innovative project iRhobot from the department of Biologie et Amélioration des Plantes of INRAE. A.M. is funded by the French National Agency ANR CellOsmo (ANR-19-CE20-0008-01). C.B. is funded by the Austrian Science Fund (FWF W1225). We acknowledge support by France-BioImaging (ANR-10-INBS-04, ‘Investments for the future’).

Author information

Authors and Affiliations

Authors

Contributions

V.B., M.P.P. and A.M. set up the imaging conditions and performed imaging. J.B.F. established the sptPALM analysis pipeline and coded the sptPALM_viewer software. V.B., A.M. and J.B.F. performed image analyses. C.B. established the statistical analysis pipeline and performed statistics. V.B., J.B.F., C.B., M.P.P., M.N., A.M. and Y.J. wrote the manuscript.

Corresponding authors

Correspondence to Alexandre Martinière or Yvon Jaillais.

Ethics declarations

Competing interests

The authors have no competing interests as defined by Nature Research or other interests that might be perceived to influence the interpretation of the article.

Additional information

Peer review information Nature Protocols thanks Guido Grossmann, Jinxing Lin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol:

Platre, M. P. et al. Science 364, 57–62 (2019): https://doi.org/10.1126/science.aav9959

Martinière, A. et al. Plant Physiol. 179, 1581–1593 (2019): https://doi.org/10.1104/pp.18.01065

Smokvarska, M. et al. Curr. Biol. 30, 4654–4664 (2020): https://doi.org/10.1016/j.cub.2020.09.013

Extended data

Extended Data Fig. 1 Fluorescence intensity of a typical mEOS2 sub-diffractive spot along time.

a, Pictures showing a single molecule through time (20 ms between each picture) and (b) corresponding trace of fluorescent intensity. Note that the signal intensity observed is not continuous, and the OFF state varies in duration between seconds and milliseconds. This blinking behavior is typical of single-molecule observation. Scale bar, 1 µm.

Extended Data Fig. 2 Example of false tracks identification.

a, Example of mis-reconnected tracks (white arrow). b, Example of track with a very long duration (white arrowhead), indicating that it is background fluorescence rather than true signal. The color gradient from blue, green to red indicates the early versus late recorded positions. Scale bars, 1 µm.

Extended Data Fig. 3 Mixture modeling reveals two latent subpopulations of Lti6B-mEos2 and PIP2;1-mEos2 molecules.

GMM (a and c) and FMSMSN (b and d) fits. Either a GMM-2V (a) or a FMSMSN-2 (d) model is retained for Lti6b and PIP2;1, respectively, using the BIC criterion. See the legend in Fig. 8c for more details.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayle, V., Fiche, JB., Burny, C. et al. Single-particle tracking photoactivated localization microscopy of membrane proteins in living plant tissues. Nat Protoc 16, 1600–1628 (2021). https://doi.org/10.1038/s41596-020-00471-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-00471-4

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing