Skip to main content
Log in

Influence of the Fluorinated Aromatic Fragments on the Structures of the Cadmium and Zinc Carboxylate Complexes Using Pentafluorobenzoates and 2,3,4,5-Tetrafluorobenzoates as Examples

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

A series of the cadmium and zinc carboxylate complexes with anions of pentafluorobenzoic (HРfbz) and 2,3,4,5-tetrafluorobenzoic (HТfbz) acids and N-donor ligands (1,10-phenanthroline (Phen) and quinoline (Quin)), [Cd(Pfbz)2(Phen)]n (I), [Cd(Рfbz)2(Рhen)2]·2MeCN (II), [Zn(H2O)-(Рfbz)2(Рhen)] (III), [Zn2Cd(Рfbz)6(Рhen)2]⋅2C6H6 (IV), [Cd2(H2O)2(Tfbz)4(Рhen)2] (V), [Cd2-(H2O)2(Tfbz)4(Quin)2] (VI), and [Cd(Tfbz)2(Phen)2]⋅HTfbz (VII), is synthesized. The structures of new complexes IVII are determined by X-ray diffraction analysis (CIF files CCDC nos. 1871300, 2005461, 2005462, 2005464, 2005466, 2005465, and 2005459, respectively). The majority of the synthesized compounds is typical of intramolecular stacking interactions between the coordinated molecules of the aromatic N-donor ligands and fluorinated substituents of the carboxylate anions. These interactions lead to the formation of unusual compounds, which are different in the cases of pentafluorobenzoates and tetrafluorobenzoates, in particular, coordination polymer I and binuclear complexes V and VI with coordinated water molecules. The synthesized zinc and cadmium compounds differ in structure and composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Baykov, S.V., Filimonov, S.I., Rozhkov, A.V., et al., Cryst. Growth Des., 2020, vol. 20, no. 2, p. 995.

    Article  CAS  Google Scholar 

  2. Adonin, S.A., Bondarenko, M.A., Novikov, A.S., and Sokolov, M.N., Crystals, 2020, vol. 10, no. 4, p. 289.

    Article  CAS  Google Scholar 

  3. Bondarenko, M.A., Adonin, S.A., Novikov, A.S., et al., Russ. J. Coord. Chem., 2020, vol. 46, no. 5, p. 302. https://doi.org/10.1134/S1070328420040016

    Article  CAS  Google Scholar 

  4. Adonin, S.A., Novikov, A.S., and Fedin, V.P., Russ. J. Coord. Chem., 2020, vol. 46, no. 1, p. 37. https://doi.org/10.1134/S1070328420010017

    Article  CAS  Google Scholar 

  5. Malenov, D.P., Janjić, G.V., Medaković, V.B., et al., Coord. Chem. Rev., 2017, vol. 345, p. 318.

    Article  CAS  Google Scholar 

  6. Goldberg, A., Kiskin, M., Shalygina, O., et al., Chem. Asian J., 2006, vol. 11, no. 4, p. 604.

  7. Shmelev, M.A., Gogoleva, N.V., Makarov, D.A., et al., Russ. J. Coord. Chem., 2020, vol. 46, no. 1, p. 3. https://doi.org/10.1134/S1070328420010017

    Article  Google Scholar 

  8. Shmelev, M.A., Gogoleva, N.V., Dolgushin, F.M., et al., Russ. J. Coord. Chem., 2020, vol. 46, no. 7, p. 493. https://doi.org/10.1134/S1070328420070076

    Article  Google Scholar 

  9. Fomina I.G., Sidorov A.A., Aleksandrov G.G., et al., Russ. Chem. Bull., 2004, no, 7, p. 1477.

  10. Talismanova, M.O., Sidorov, A.A., Aleksandrov, G.G., et al., Russ. Chem. Bull., 2001, no. 11, p. 2251.

  11. Gol’dberg, A.E., Kiskin, M.A., Kozyukhin S.A., et al., Russ. Chem. Bull., 2011, no. 5. C. 1012.

    Article  CAS  Google Scholar 

  12. Cockcroft, J.K., Rosu-Finsen, A., Fitch, A.N., et al., CrystEngComm, 2018, vol. 20, p. 6677.

    Article  CAS  Google Scholar 

  13. Collings, J.C., Roscoe, K.P., Robins, E.G., et al., New J. Chem., 2012, vol. 26, p. 1740.

    Article  Google Scholar 

  14. Imai, Y., Kawaguchi, K., Sato, T., et al., Mol. Cryst. Liq. Cryst., 2008, vol. 487, p. 153.

    Article  CAS  Google Scholar 

  15. Kong, Y.-J., Li, P., Han, L.-J., et al., Acta Crystallogr., Sect. C: Struct. Chem., 2017, vol. 73, p. 424.

    Article  CAS  Google Scholar 

  16. Neto, J.A., Silva, C.C., Ribeiro, L., et al., Z. Krist. Cryst. Mater., 2019, vol. 234, p. 119.

    Article  CAS  Google Scholar 

  17. Ye Bao-Hui, Chen Xiao-Ming, Xue Feng, et al., Inorg. Chim. Acta, 2000, vol. 299, p. 1.

    Article  CAS  Google Scholar 

  18. Shmelev, M.A., Gogoleva, N.V., Kuznetsova, G.N., et al., Russ. J. Coord. Chem., 2020, vol. 46, no. 8, p. 557. https://doi.org/10.1134/S1070328420080060

    Article  CAS  Google Scholar 

  19. SMART (control) and SAINT (integration) Software. Version 5.0, Madison: Bruker AXS Inc., 1997.

  20. Sheldrick, G.M., SADABS, Madison: Bruker AXS Inc., 1997.

    Google Scholar 

  21. Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3.

    Article  CAS  Google Scholar 

  22. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, p. 339.

    Article  CAS  Google Scholar 

  23. Alvarez, S. and Llunell, M., Dalton Trans., 2000, no. 19, p. 3288.

  24. Casanova, D., Llunell, M., Alemany, P., and Alvarez, S., Chem.-Eur. J., 2005, vol. 11, p. 1479.

    Article  CAS  PubMed  Google Scholar 

  25. Nath, J., Tarai, A., and Baruah, J.B., ACS Omega, 2019, vol. 4, p. 18444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li Hong-Jin, Gao Zhu-Qing, and Gu Jin-Zhong, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2011, vol. 67, p. m 919.

  27. Zhang, Z.Y., Bi, C.F., Fan, Y.H., et al., Russ. J. Coord. Chem., 2015, vol. 41, p. 246. https://doi.org/10.1134/S1070328415030094

    Article  CAS  Google Scholar 

  28. Hu Min, Yang Xiao-Gang, Zhang Qiang, et al., Z. Anorg. Allg. Chem., 2011, vol. 637, p. 478.

    Article  CAS  Google Scholar 

  29. Lou Qi-Zheng, Z. Kristallogr. New Cryst. Struct., 2007, vol. 222, p. 105.

    Article  CAS  Google Scholar 

  30. Haldar, R., Prasad, K., Samanta, P.K., et al., Cryst. Growth Des., 2016, vol. 16, p. 82.

    Article  CAS  Google Scholar 

  31. Dai, P.X., Yang, E.C., and Zhao, X.J., Russ. J. Coord. Chem., 2015, vol. 41, p. 16. https://doi.org/10.1134/S1070328415010029

    Article  CAS  Google Scholar 

  32. Liu, C.-S., Hu, M., and Guo, L.-Q., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2009, vol. 65, p. m1432.

    Article  CAS  Google Scholar 

  33. Li Wei, Li Chang-Hong, Yang Ying-Qun, et al., Wuji Huaxue Xuebao (Chin. J. Inorg. Chem.), 2007, vol. 23, p. 2013.

    Google Scholar 

  34. Li Wei, Li Chang-Hong, Yang Ying-Qun, and Li Dong-Ping, Wuji Huaxue Xueba (Chin. J. Inorg. Chem.), 2008, vol. 24, p. 2060.

    Google Scholar 

  35. Chen Man-Sheng, Zhang Chun-Hua, Kuang Dai-Zhi, et al., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2007, vol. 63, p. m965.

    Article  CAS  Google Scholar 

  36. Pan Tian-Tian, Liu Jia-Geng, and Xu Duan-Jun, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2006, vol. 62, p. m1597.

    Article  CAS  Google Scholar 

  37. Yu Yu-Ye, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2011, vol. 67, p. m246.

    Article  CAS  Google Scholar 

  38. Banrabah, R., Viossat, B., and Lemoine, P., Z. Kristallogr. NCS, 2011, vol. 226, p. 291.

    Article  CAS  Google Scholar 

  39. Qiu Yongcai, Wang Kunnan, Liu Yan, et al., Inorg. Chim. Acta, 2007, vol. 360, p. 1819.

    Article  CAS  Google Scholar 

  40. Sen, S., Saha, M.K., Kundu, P., et al., Inorg. Chim. Acta, 1999, vol. 288, p. 118.

    Article  CAS  Google Scholar 

  41. Zhang Bing-Yu, Nie Jing-Jing, and Xu Duan-Jun, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2008, vol. 64, p. m937.

    Article  CAS  Google Scholar 

  42. Roy, S., Bauza, A., Frontera, A., et al., CrystEngComm, 2015, vol. 17, p. 3912.

    Article  CAS  Google Scholar 

  43. Lou Qi-Zheng and Zhang Bi-Song, Z. Kristallogr. NCS, 2007, vol. 222, p. 199.

    CAS  Google Scholar 

  44. Gao Zhu-Qing, Li Hong-Jin, Gu Jin-Zhong, et al., J. Solid State Chem., 2016, vol. 241, p. 121.

    Article  CAS  Google Scholar 

  45. Pan Tian-Tian, Su Jian-Rong, and Xu Duan-Jun, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2006, vol. 62, p. m2183.

    Article  CAS  Google Scholar 

  46. Wen Decai, Xie Jing, and Jiang Xiurong, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2008, vol. 64, p. m851.

    Article  CAS  Google Scholar 

  47. Ali Nida, Tahir, M.N., Ali Saqib, et al., J. Coord. Chem., 2014, vol. 67, p. 1290.

    Article  CAS  Google Scholar 

  48. Abu Ali, H., Darawsheh, M.D., and Rappocciolo, E., Polyhedron, 2013, vol. 61, p. 235.

    Article  CAS  Google Scholar 

  49. Liu Ji-Zhong, Zhang Zhong, Shi Zhan-Wang, and Gao Peng, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2011, vol. 67, p. m30.

    Article  CAS  Google Scholar 

  50. Nie Jing-Jing, Xu Xun, and Xu Duan-Jun, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2011, vol. 65, p. m855.

    Article  CAS  Google Scholar 

  51. Lee Young Min, Song Young Joo, Poong Jung In, et al., Inorg. Chem. Commun., 2010, vol. 13, p. 101.

    Article  CAS  Google Scholar 

  52. Clegg, W., Little, I.R., and Straughan, B.P., Inorg.Chem., 1988, vol. 27, p. 1916.

    Article  CAS  Google Scholar 

  53. Ge Chun-Hua, Zhang Rui, Fan Ping, et al., Chin. Chem. Lett., 2013, vol. 24, p. 73.

    Article  CAS  Google Scholar 

  54. Gogoleva, N.V., Shmelev, M.A., Evstifeev, I.S., et al., Russ. Chem. Bull., 2016, vol. 65, p. 181.

    Article  CAS  Google Scholar 

  55. Nikolaevskii, S.A., Evstifeev, I.S., Kiskin, M.A., et al., Polyhedron, 2018, vol. 152, p. 61.

    Article  CAS  Google Scholar 

  56. Wu, W.P., Wang, J., Lu, L., and Wu, Y., Russ. J. Coord. Chem., 2016, vol. 42, p. 217. https://doi.org/10.1134/S107032841603009X

    Article  CAS  Google Scholar 

  57. Ren Hong, Song Tianyou, Xu Jianing, et al., Transition Met. Chem., 2006, vol. 31, p. 992.

    Google Scholar 

  58. Ni Sheng-Liang, Zhou Feng, and Qi Jin-Li, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2011, vol. 67, p. m779.

    Article  CAS  Google Scholar 

  59. Liu Chun-Sen, Sanudo, E.C., Yan Li-Fen, et al., Transition Met. Chem., 2009, vol. 34, p. 51.

    Google Scholar 

  60. Zheng Miao, Zheng Yue-Qing, and Zhang Bi-Song, J. Coord. Chem., 2011, vol. 64, p. 3419.

    Article  CAS  Google Scholar 

  61. Bhattacharyya, M.K., Saha, U., Dutta, D., et al., RSC Advances, 2019, vol. 9, p. 16339.

    Article  CAS  Google Scholar 

  62. Song Wen Dong, Yan Jian-Bin, and Hao Xiao-Min, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2008, vol. 64, p. m919.

    Article  CAS  Google Scholar 

  63. Gomez, V. and Corbella, M., Eur. J. Inorg. Chem., 2009, p. 4471.

  64. Li Jun-Xia and Du Zhong-Xiang, J. Cluster Sci., 2020, vol. 31, p. 507.

    Article  CAS  Google Scholar 

  65. Li Long, Diao Kaisheng, Ding Yuqiu, and Yin Xianhong, Mol. Cryst. Liq. Cryst., 2013, vol. 575, p. 173.

    Article  CAS  Google Scholar 

  66. Yang Ying-Qun, Li Chang-Hong, Li Wei, and Kuang Yun-Fei, Wuji Huaxue Xuebao (Chin. J. Inorg. Chem.), 2010, vol. 26, p. 1890.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The XRD studies (compounds IIVII), IR spectroscopy, and elemental analyses of the complexes were carried out on the equipment of the Center for Collective Use “Physical Methods of Investigation” at the Kurnakov Institute of General and Inorganic Chemistry (Russian Academy of Sciences) in terms of the state assignment of the Kurnakov Institute of General and Inorganic Chemistry (Russian Academy of Sciences) in the area of basic research. The study of the structure of complex I was supported by the Ministry of Science and Higher Education of the Russian Federation using the scientific equipment of the Center of Investigation of Structure of Molecules of the Nesmeyanov Institute of Organoelement Compounds (Russian Academy of Sciences). The authors are grateful to Prof. A.G. Starikov for help in discussion.

Funding

The syntheses and studies of complexes IIII, V, and VI were supported by the Russian Foundation for Basic Research (project no. 18-29-04043), and complexes IV and VII were synthesized and studied in the framework of the state assignment of the Kurnakov Institute of General and Inorganic Chemistry (Russian Academy of Sciences) in the area of basic research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Shmelev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shmelev, M.A., Kuznetsova, G.N., Dolgushin, F.M. et al. Influence of the Fluorinated Aromatic Fragments on the Structures of the Cadmium and Zinc Carboxylate Complexes Using Pentafluorobenzoates and 2,3,4,5-Tetrafluorobenzoates as Examples. Russ J Coord Chem 47, 127–143 (2021). https://doi.org/10.1134/S1070328421020068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328421020068

Keywords:

Navigation