Skip to main content
Log in

Synthetic Approaches to New Redox-Active Carbene Ligands

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The design of new redox-switchable molecules requires the development of simple and efficient synthetic approaches. This study demonstrates the possibility of ortho-lithiation of ferrocenecarboxaldehyde (aryl)imines (IaIc) followed by the reaction with ketones to give 1,2-disubstituted ferrocenes (IIaIIc). These products, in turn, can be cyclized by treatment with trimethylsilyl triflate to give the cationic precursors of ferrocene-containing N-heterocyclic carbenes (IIIaIIIc), in which the heterocycle is annulated to one of the ferrocene cyclopentadienyl ring. Treatment of IIIaIIIc with a base in the presence of a source of rhodium afforded rhodium carbene complexes (IVa, IVb) in which the carbene ligand resembled cyclic alkylaminocarbenes in the electron-donor properties. Compounds Ib and IVa were studied by X-ray diffraction (CIF file CCDC nos. 2000413 and 2000414, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Canary, J.W., Chem. Soc. Rev., 2009, vol. 38, no. 3, p. 747.

    Article  CAS  Google Scholar 

  2. Molecular and Supramolecular Information Processing: From Molecular Switches to Unconventional Computing, Katz, E., Ed., Weinheim Chichester: Wiley, 2012.

    Google Scholar 

  3. Sivaev, I., Molecules, 2017, vol. 22, no. 12, p. 2201.

    Article  Google Scholar 

  4. Molecular Switches, Feringa, B.L. and Browne, W.R., Eds., Weinheim: Wiley-VCH, 2011.

    Google Scholar 

  5. Wang, X., Song, S., and Zhang, H., Chem. Soc. Rev., 2020, vol. 49, no. 3, p. 736.

    Article  CAS  Google Scholar 

  6. Blanco, V., Leigh, D.A., and Marcos, V., Chem. Soc. Rev., 2015, vol. 44, no. 15, p. 5341.

    Article  CAS  Google Scholar 

  7. Sims, C.M., Hanna, S.K., Heller, D.A., et al., Nanoscale, 2017, vol. 9, no. 40, p. 15226.

    Article  CAS  Google Scholar 

  8. Al-Kutubi, H., Zafarani, H.R., Rassaei, L., and Mathwig, K., Eur. Polym. J., 2016, vol. 83, p. 478.

    Article  CAS  Google Scholar 

  9. Wu, T.-H., Hsu, Y.-Y., and Lin, S.-Y., Small, 2012, vol. 8, no. 13, p. 2099.

    Article  CAS  Google Scholar 

  10. Sarkar, S., Dutta, S., Chakrabarti, S., et al., ACS Appl. Mater. Interfaces, 2014, vol. 6, no. 9, p. 6308.

    Article  CAS  Google Scholar 

  11. Nikovskiy, I., Polezhaev, A., Novikov, V., et al., Chem.-Eur. J., 2020, vol. 26, no. 25, p. 5629.

    Article  CAS  Google Scholar 

  12. Pavlov, A.A., Aleshin, D.Y., Nikovskiy, I.A., et al., Eur. J. Inorg. Chem., 2019, vol. 2019, no. 23, p. 2819.

    Article  CAS  Google Scholar 

  13. Gallei, M. and Rüttiger, C., Chem.-Eur. J., 2018, vol. 24, no. 40, p. 10006.

    Article  CAS  Google Scholar 

  14. Wei, J. and Diaconescu, P.L., Acc. Chem. Res., 2019, vol. 52, no. 2, p. 415.

    Article  CAS  Google Scholar 

  15. Hopkinson, M.N., Richter, C., Schedler, M., and Glorius, F., Nature, 2014, vol. 510, no. 7506, p. 485.

    Article  CAS  Google Scholar 

  16. Bourissou, D., Guerret, O., Gabbaï, F.P., and Bertrand, G., Chem. Rev., 2000, vol. 100, no. 1, p. 39.

    Article  CAS  Google Scholar 

  17. Jacobsen, H., Correa, A., Poater, A., et al., Coord. Chem. Rev., 2009, vol. 253, no. 5, p. 687.

    Article  CAS  Google Scholar 

  18. Crudden, C.M. and Allen, D.P., Coord. Chem. Rev., 2004, vol. 248, no. 21, p. 2247.

    Article  CAS  Google Scholar 

  19. Crabtree, R.H., Coord. Chem. Rev., 2013, vol. 257, no. 3, p. 755.

    Article  CAS  Google Scholar 

  20. Huynh, H.V., Chem. Rev., 2018, vol. 118, no. 19, p. 9457.

    Article  CAS  Google Scholar 

  21. Díez-González, S. and Nolan, S.P., Coord. Chem. Rev., 2007, vol. 251, no. 5, p. 874.

    Article  Google Scholar 

  22. Gusev, D.G., Organometallics, 2009, vol. 28, no. 22, p. 6458.

    Article  CAS  Google Scholar 

  23. Melaimi, M., Soleilhavoup, M., and Bertrand, G., Angew. Chem., Int. Ed. Engl., 2010, vol. 49, no. 47, p. 8810.

    Article  CAS  Google Scholar 

  24. Lavallo, V., Canac, Y., Präsang, C., et al., Angew. Chem., Int. Ed. Engl., 2005, vol. 44, no. 35, p. 5705.

    Article  CAS  Google Scholar 

  25. Nikovskiy, I.A., Spiridonov, K.A., Zakharova, D.V., et al., Inorg. Chim. Acta, 2019, vol. 495, p. 118976.

    Article  CAS  Google Scholar 

  26. Polezhaev, A.V., Ezernitskaya, M.G., and Koridze, A.A., Inorg. Chim. Acta, 2019, vol. 496, p. 118844.

    Article  CAS  Google Scholar 

  27. Koridze, A.A., Polezhaev, A.V., Safronov, S.V., et al., Organometallics, 2010, vol. 29, no. 19, p. 4360.

    Article  CAS  Google Scholar 

  28. Polezhaev, A.V., Liss, C.J., Telser, J., et al., Chem.-Eur. J., 2018, vol. 24, no. 6, p. 1330.

    Article  CAS  Google Scholar 

  29. Sheldrick, G., Acta Crystallogr., Sect. A: Found. Adv., 2015, vol. 71, no. 1, p. 3.

    Article  Google Scholar 

  30. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, no. 2, p. 339.

    Article  CAS  Google Scholar 

  31. Peris, E., Chem. Rev., 2018, vol. 118, no. 19, p. 9988.

    Article  CAS  Google Scholar 

  32. Siemeling, U., Eur. J. Inorg. Chem., 2012, vol. 2012, no. 22, p. 3523.

    Article  CAS  Google Scholar 

  33. Takagaki, W., Yasue, R., and Yoshida, K., Bull. Chem. Soc. Jpn., 2020, vol. 93, no. 2, p. 200.

    Article  CAS  Google Scholar 

  34. Yoshida, K. and Yasue, R., Chemistry, 2018, vol. 24, no. 70, p. 18575.

    Article  CAS  Google Scholar 

  35. Rao, B., Tang, H., Zeng, X., et al., Angew. Chem., Int. Ed. Engl., 2015, vol. 54, no. 49, p. 14915.

    Article  CAS  Google Scholar 

  36. Alvarez, S., Chem. Rev., 2015, vol. 115, no. 24, p. 13447.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

X-ray diffraction studies were supported by the Ministry of Science and Higher Education of the Russian Federation and were performed using research equipment of the Center for Studies of Molecular Structure of the Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences.

Funding

This study was supported by the Russian Science Foundation (project no. 18-73-00208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Polezhaev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Z. Svitanko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikovskii, I.A., Spiridonov, K.A., Pavlov, A.A. et al. Synthetic Approaches to New Redox-Active Carbene Ligands. Russ J Coord Chem 47, 117–126 (2021). https://doi.org/10.1134/S1070328421020044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328421020044

Keywords:

Navigation