Skip to main content
Log in

A Common-Gate Current-Reuse UWB LNA for Wireless Applications in 90 nm CMOS

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a CMOS low noise amplifier (LNA) for ultra-wideband (UWB) wireless applications is presented. The proposed CMOS LNA is designed using common-gate (CG) topology at the first stage to achieve ultra wideband input matching. The common-gate has been cascaded with common-source (CS) current-reused configuration to enhance the gain and noise figure (NF) performance of the LNA with low power consumption. In order to ensure maximum power flow from CG input stage to gm boosted CS current-reused stage, parallel-series LC matching has been used. The output-matching network is used to improve the output reflection coefficient. The LNA is designed using standard 90 nm CMOS process for 3.1–10.6 GHz UWB. It exhibits a power-gain (S21) of 19.2–20.8 dB, an NF of 2.3–3.7 dB, a reverse-isolation (S12) of less − 53.8 dB and an S22 of less than − 6 dB for the entire UWB frequency range. The proposed LNA has an input reflection coefficient (S11) of less than − 10.6 dB for 3.1–10.6 GHz. It achieves input 1-dB compression point (P1dB) of − 17 dBm at 6 GHz and input third-order intercept point (IIP3) of − 8 dBm, while it consumes only 5.05 mW of power from a Vdd supply of 0.7 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. FCC. (2002). Revision of part 15 of the commission’s rules regarding ultra-wide-band transmission system. Technical Report, ET-Docket (pp. 98–153).

  2. Larson, L. E. (1998). Integrated circuit technology for RFICs—Present status and future directions. EEE Journal of Solid-State Circuits, 33(3).

  3. Arshad, S., Zafar, F., Ramzan, R., & Wahab, Q. (2013). Wideband and multiband CMOS LNAs: State-of-the-art and future prospects. Microelectronics Journal, 44(9), 774–786.

    Article  Google Scholar 

  4. Chen, H. K., Chang, D. C., Juang, Y. Z., & Lu, S. S. (2007). A compact wideband CMOS low noise amplifier using shunt resistive feedback and series inductive peaking techniques. IEEE Microwave and Wireless Components Letters, 17(8), 616–618.

    Article  Google Scholar 

  5. Wei, M. D., Chang, S. F., & Negra, R. (2014). Triple cascaded current-reuse low noise amplifier. Analog Integrated Circuits and Signal Processing, 80, 327–333. https://doi.org/10.1007/s10470-014-0334-9

    Article  Google Scholar 

  6. Singh, V., Arya, S. K., & Kumar, M. (2018). Gm-boosted current-reuse inductive-peaking common source LNA for 3.1–10.6 GHz UWB wireless applications in 32 nm CMOS. Analog Integrated Circuits and Signal Processing, 97, 351–363.

    Article  Google Scholar 

  7. Meaamar, A., Boon, C. C., Yeo, K. S., & Do, M. A. (2010). A wideband low power low-noise amplifier in CMOS technology. IEEE Transactions on Circuits and Systems I: Regular Papers, 57, 773–782.

    Article  MathSciNet  Google Scholar 

  8. Chen, M., & Lin, J. (2009). A 0.1–20 GHz low-power self-biased resistive-feedback LNA in 90 nm digital CMOS. IEEE Microwave and Wireless Components Letters, 19, 323–325.

    Article  MathSciNet  Google Scholar 

  9. Nakhlestani, A., Hakimi, A., & Movahhedi, M. (2012). A novel configuration for UWB LNA suitable for low-power and low-voltage applications. Microelectronics Journal, 43, 444–451.

    Article  Google Scholar 

  10. Sapone, G., & Palmisano, G. (2011). A 3–10-GHz low-power CMOS low-noise amplifier for ultra-wideband communication. IEEE Transactions on Microwave Theory and Techniques, 59(3), 678–686.

    Article  Google Scholar 

  11. Nieuwoudt, A., Ragheb, T., Nejati, H., & Massoud, Y. (2009). Numerical design optimization methodology for wideband and multi-band inductively degenerated cascode CMOS Low noise amplifiers. IEEE Transactions On Circuits And Systems—I: Regular Papers, 56(6), 1088–1101.

    Article  MathSciNet  Google Scholar 

  12. Guan, X., & Nguyen, C. (2006). Low-power-consumption and high-gain CMOS distributed amplifiers using cascade of inductively coupled common-source gain cells for UWB systems. IEEE Transactions On Microwave Theory And Techniques, 54(8), 3278–3283.

    Article  Google Scholar 

  13. Machiels, B., Reynaert, P., & Steyaert, M. (2010). Power efficient distributed low noise amplifier in 90 nm CMOS. IEEE International Symposium on Radio Frequency Integrated Circuits. https://doi.org/10.1109/rfic.2010.5477322

    Article  Google Scholar 

  14. Mæland, K., Kjelgård, K. G., & Lande, T. S. (2015). CMOS distributed amplifiers for UWB radar. IEEE International Symposium on Circuits and Systems. https://doi.org/10.1109/iscas.2015.7168879

    Article  Google Scholar 

  15. Shen, M., Tong, T., Mikkelsen, J. H., Jensen, O. K., & Larsen, T. (2011). Design and implementation of a 1–5 GHz UWB low noise amplifier in 0.18 μm CMOS. Analog Integrated Circuits and Signal Processing, 67, 41–48. https://doi.org/10.1007/s10470-010-9508-2

    Article  Google Scholar 

  16. Woo, S., Shao, J., & Kim, H. (2014). A gm-boosted common-gate CMOS low-noise amplifier with high P1dB. Analog Integrated Circuits and Signal Processing, 80, 33–37. https://doi.org/10.1007/s10470-014-0306-0

    Article  Google Scholar 

  17. Cen, M., & Song, S. (2014). A high gain, low-power low-noise amplifier for ultra-wideband wireless systems. Circuits, Systems, and Signal Processing, 33, 3251–3262. https://doi.org/10.1007/s00034-014-9801-x

    Article  Google Scholar 

  18. Razavi, B. (2013). RF microelectronics (2nd ed.). London: Pearson Education.

    Google Scholar 

  19. Lee, J.-Y., Park, H.-K., Chang, H.-J., & Yun, T.-Y. (2012). Low-power UWB LNA with common-gate and current-reuse techniques. IET Microwaves, Antennas & Propagation, 6(7), 793–799. https://doi.org/10.1049/iet-map.2011.0415

    Article  Google Scholar 

  20. Pandey, S., & Singh, J. (2015). A low power and high gain CMOS LNA for UWB applications in 90nm CMOS process. Microelectronics Journal, 46(5), 390–397.

    Article  Google Scholar 

  21. Pandey, S., Gawande, T., & Kondekar P. N. (2018). A 3.1–10.6 GHz UWB LNA based on self cascode technique for improved bandwidth and high gain. Wireless Personal Communications. https://doi.org/10.1007/s11277-018-5795-1

    Article  Google Scholar 

  22. Hsu, M.-T., Chang, Y.-C., & Huang, Y.-Z. (2013). Design of low power UWB LNA based on common source topology with current-reused technique. Microelectronics Journal, 44, 1223–1230.

    Article  Google Scholar 

  23. Arshad, S., Ramzan, R., Muhammad, K., & Wahab, Q. (2015). A sub-10mW, noise cancelling, wideband LNA for UWB applications. International Journal of Electronics and Communications, 69(1), 109–118. https://doi.org/10.1016/j.aeue.2014.08.002

    Article  Google Scholar 

  24. Hayati, M., Cheraghaliei, S., & Zarghami, S. (2018). Design of UWB low noise amplifier using noise-canceling and current-reused techniques. Integration the VLSI Journal, 60, 232–239.

    Article  Google Scholar 

  25. Taris, T., Majek, C., Deval, Y., & Begueret, J.-B. (2009). Current reuse topology in UWB CMOS LNA. Analog Integrated Circuits and Signal Processing, 61, 149–158.

    Article  Google Scholar 

  26. Lin, Y.-J., Hsu, S. S., Jin, J.-D., & Chan, C. Y. (2007). A 3.1–10.6 GHz ultra-wideband CMOS low noise amplifier with current-reused technique. IEEE Microwave and Wireless Components Letters, 17(3), 232–234.

    Article  Google Scholar 

  27. Pandey, S., Gawande, T., & Kondekar, P. N. (2017). A 0.9 V, 4.57 mW UWB LNA with improved gain and low power consumption for 31–106 GHz ultra-wide band applications. Wireless Personal Communications. https://doi.org/10.1007/s11277-017-4185-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Arya, S.K. & Kumar, M. A Common-Gate Current-Reuse UWB LNA for Wireless Applications in 90 nm CMOS. Wireless Pers Commun 119, 1405–1423 (2021). https://doi.org/10.1007/s11277-021-08287-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08287-5

Keywords

Navigation