Skip to main content
Log in

Finite-temperature mean-field approximations for shell model Hamiltonians: the code HF-SHELL

  • Code Paper
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We present the code HF-SHELL for solving the self-consistent mean-field equations for configuration-interaction shell model Hamiltonians in the proton–neutron formalism. The code can calculate both zero- and finite-temperature properties in the Hartree-Fock (HF), HF+Bardeen–Cooper–Schrieffer (HF+BCS) and the Hartree–Fock–Bogoliubov (HFB) mean-field approximations. Particle-number projection after variation is incorporated to reduce the grand-canonical ensemble to the canonical ensemble, making the code particularly suitable for the calculation of nuclear state densities. The code does not impose axial symmetry and allows for triaxial quadrupole deformations. The self-consistency cycle is particularly robust through the use of the heavy-ball optimization technique and the implementation of different options to constrain the quadrupole degrees of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data presented here is included in the git repository.]

Notes

  1. Also known as the stationary phase approximation.

  2. At \(T=0\), we can use these definitions also in the canonical HFB basis. However, for \(T\not = 0\), a canonical basis generally does not exist.

  3. When pairing correlations vanish, this formula reduces to the Inglis moment of inertia [47].

  4. These purely numerical parameters are not to be confused with the chemical potential \(\mu _q\) and \(\alpha _q = \beta \mu _q\) that were introduced in Sect. 2.

  5. Also known as the imaginary time-step method.

References

  1. P. Fanto, Y. Alhassid, G.F. Bertsch, Phys. Rev. C 96, 014305 (2017)

    ADS  Google Scholar 

  2. W. Ryssens, M. Bender, P.H. Heenen, Eur. Phys. J. A 55, 93 (2019)

    ADS  Google Scholar 

  3. B. Gall, P. Bonche, J. Dobaczewski, H. Flocard, P.H. Heenen, Z. Phys. A 348, 183 (1994)

    ADS  Google Scholar 

  4. M. Bender, P.H. Heenen, P.G. Reinhard, Rev. Mod. Phys. 75, 121 (2003)

    ADS  Google Scholar 

  5. P. Ring, P. Schuck, The nuclear many-body problem (Springer, Berlin Heidelberg, 1980)

    Google Scholar 

  6. T. Otsuka, M. Honma, T. Mizusaki, N. Shimizu, Y. Utsuno, Prog. Part. Nucl. Phys. 47, 319 (2001)

    ADS  Google Scholar 

  7. For a recent review, see Y. Alhassid, in Emergent Phenomena in Atomic Nuclei from Large-Scale Modeling: a Symmetry-Guided Perspective, ed. by K.D. Launey (World Scientific, Singapore, 2017), pp. 267–298

  8. Z.C. Gao, M. Horoi, Y.S. Chen, Phys. Rev. C 92, 064310 (2015)

    ADS  Google Scholar 

  9. Y. Alhassid, G.F. Bertsch, C.N. Gilbreth, H. Nakada, Phys. Rev. C 93, 044320 (2016)

    ADS  Google Scholar 

  10. B. Bally, A. Sánchez-Fernández, T.R. Rodríguez, Phys. Rev. C 100, 44308 (2019)

    ADS  Google Scholar 

  11. N. Schunck, D. Duke, H. Carr, Phys. Rev. C 91(3), 034327 (2015)

    ADS  Google Scholar 

  12. V. Martin, J.L. Egido, L.M. Robledo, Phys. Rev. C 68, 034327 (2003)

    ADS  Google Scholar 

  13. S. Hilaire, M. Girod, S. Goriely, A.J. Koning, Phys. Rev. C 86, 064317 (2012)

    ADS  Google Scholar 

  14. S. Bjørnholm, A. Bohr, B. Mottelson, Proc. Third IAEA Symp. on Physics and Chemistry of Fission pp. 367–372 (1973)

  15. J.A. Maruhn, P.G. Reinhard, P.D. Stevenson, A.S. Umar, Comput. Phys. Commun. 185, 2195 (2014)

    ADS  Google Scholar 

  16. T. Nikšić, N. Paar, D. Vretenar, P. Ring, Comput. Phys. Commun. 185, 1808 (2014)

    ADS  Google Scholar 

  17. W. Ryssens, V. Hellemans, M. Bender, P.H. Heenen, Comput. Phys. Commun. 187, 175 (2015)

    ADS  Google Scholar 

  18. R.N. Perez, N. Schunck, R.D. Lasseri, C. Zhang, J. Sarich, Comput. Phys. Commun. 220, 363 (2017)

  19. N. Schunck, J. Dobaczewski, W. Satuła, P. Ba̧czyk, J. Dudek, Y. Gao, M. Konieczka, K. Sato, Y. Shi, X.B. Wang, T.R. Werner, Comput. Phys. Commun. 216, 145 (2017)

  20. B. Bally, A. Sánchez-Fernández, T.R. Rodríguez, arXiv: 2010.14169 (2020)

  21. A. Dobrowolski, K. Pomorski, J. Bartel, Comput. Phys. Commun. 199, 118 (2016)

    MathSciNet  ADS  Google Scholar 

  22. F. Garcia, O. Rodriguez, J. Mesa, J.D. Arruda-Neto, V.P. Likhachev, E. Garrote, R. Capote, F. Guzmán, Comput. Phys. Commun. 120, 57 (1999)

    ADS  Google Scholar 

  23. M.V. Stoitsov, N. Schunck, M. Kortelainen, N. Michel, H. Nam, E. Olsen, J. Sarich, S. Wild, Comp. Phys. Comm. 184, 1592 (2013)

    ADS  Google Scholar 

  24. N. Schunck, J. Dobaczewski, J. McDonnell, W. Satuła, J.A. Sheikh, A. Staszczak, M. Stoitsov, P. Toivanen, Comput. Phys. Commun. 183, 166 (2012)

    MathSciNet  ADS  Google Scholar 

  25. G.F. Bertsch, J.M. Mehlhaff, Comp. Phys. Comm. 207, 518 (2016)

    ADS  Google Scholar 

  26. C. Özen, Y. Alhassid, H. Nakada, Phys. Rev. Lett. 110, 042502 (2013)

    ADS  Google Scholar 

  27. L.M. Robledo, G.F. Bertsch, Phys. Rev. C 84, 014312 (2011)

    ADS  Google Scholar 

  28. A.L. Goodman, Nucl. Phys. A 352, 30 (1981)

    ADS  Google Scholar 

  29. J.P. Blaizot, G. Ripka, Quantum theory of finite systems (MIT Press, Cambridge, 1986)

    Google Scholar 

  30. N. Schunck, Energy density functional methods for atomic nuclei (IOP Publishing, Bristol, 2019)

    Google Scholar 

  31. M. Gaudin, Nucl. Phys. 15, 89 (1960)

    Google Scholar 

  32. C. Bloch, A. Messiah, Nucl. Phys. 39, 95 (1962)

    Google Scholar 

  33. B. Zumino, J. Math. Phys. 3, 1055 (1962)

    ADS  Google Scholar 

  34. K.T.R. Davies, S. Krieger, Nucl. Phys. A 342, 111 (1980)

    ADS  Google Scholar 

  35. J.L. Egido, J. Lessing, V. Martin, L.M. Robledo, Nucl. Phys. A 594, 70 (1995)

    ADS  Google Scholar 

  36. T. Duguet and W. Ryssens, Phys. Rev. C 102, 044328 (2020)

  37. S. Levit, Y. Alhassid, Nucl. Phys. A 413, 439 (1984)

    ADS  Google Scholar 

  38. C. Esebbag, J.L. Egido, Nucl. Phys. A 552, 205 (1993)

    ADS  Google Scholar 

  39. D. Gambacurta, D. Lacroix, Phys. Rev. C 85, 044321 (2012)

    ADS  Google Scholar 

  40. P. Fanto, Phys. Rev. C 96, 051301(R) (2017)

    ADS  Google Scholar 

  41. J. Mathews, L. Walker, Mathematical methods of physics (Addison-Wesley, Boston, 1970)

    Google Scholar 

  42. M. Chaichian, A. Demichev, Path integrals in physics (CRC Press, Boca Raton, 2001)

    Google Scholar 

  43. T. Ericson, Adv. Phys. 9, 425 (1960)

    ADS  Google Scholar 

  44. J. Suhonen, From nucleons to nucleus: concepts of microscopic nuclear theory (Springer, Berlin Heidelberg New-York, 2007)

    Google Scholar 

  45. M. Bender, K. Rutz, P.G. Reinhard, J.A. Maruhn, Eur. Phys. J. A 8, 59 (2000)

    ADS  Google Scholar 

  46. S. Belyaev, Nucl. Phys. 24, 322 (1961)

    Google Scholar 

  47. D.R. Inglis, Phys. Rev. C 96, 1059 (1954)

    ADS  Google Scholar 

  48. Y. Alhassid, G.F. Bertsch, L. Fang, S. Liu, Phys. Rev. C 72, 064326 (2005)

    ADS  Google Scholar 

  49. A. Staszczak, M. Stoitsov, A. Baran, W. Nazarewicz, Eur. Phys. J. A 46, 85 (2010)

    ADS  Google Scholar 

  50. W. Ryssens, M. Bender, P.H. Heenen, in preparation

  51. B.A. Brown, W.A. Richter, Phys. Rev. C 74, 034315 (2006)

    ADS  Google Scholar 

  52. Y. Alhassid, L. Fang, H. Nakada, Phys. Rev. Lett. 101, 082501 (2008)

    ADS  Google Scholar 

  53. A. Bohr, B. Mottelson, Nuclear structure, Vol. I: single-particle motion (W. A. Benjamin, N. Y., 1969)

  54. C.W. Johnson, W.E. Ormand, P.G. Krastev, Comput. Phys. Commun. 184, 2761 (2013)

    ADS  Google Scholar 

  55. C.W. Johnson, W.E. Ormand, K.S. McElvain, H. Shan, arXiv:1801.08432 (2018)

  56. S. van der Walt, S.C. Colbert, G. Varoquaux, Comput. Sci. Eng. 13, 22 (2011)

    Google Scholar 

Download references

Acknowledgements

We thank P. Fanto for useful discussions and for comments on the manuscript. We also thank M. Bender for useful discussions, and in particular for pointing out the advantages of Brents algorithm for root finding, and providing an example subroutine. We thank P. Stevenson for providing an example of a Fortran module for the calculation of Clebsch–Gordan coefficients. This work was supported in part by the U.S. DOE Grant No. DE-SC0019521.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Alhassid.

Additional information

Communicated by Michael Bender.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryssens, W., Alhassid, Y. Finite-temperature mean-field approximations for shell model Hamiltonians: the code HF-SHELL. Eur. Phys. J. A 57, 76 (2021). https://doi.org/10.1140/epja/s10050-021-00365-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00365-3

Keywords

Navigation