Skip to main content
Log in

Aggregation Characteristics of the Sun’s Large-Scale Magnetic Field Associated with a Global Magnetic Anomaly in the Last Extended Solar Cycle

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The solar cycle represents the Sun’s periodically changing magnetic state, which is potentially subject to global magnetic anomalies emerging on it. What the characteristics are of the Sun’s large-scale magnetic field playing roles in these anomalies is a key to clarifying how the Sun deviates from its normal magnetic state. This article reports aggregation characteristics of the large-scale magnetic field associated with a global magnetic anomaly that emerged when the Sun went through one of the longest solar cycles in two hundred years. The characteristics were identified by extracting cluster feature values of solar surface magnetic fields via a population ecological method from synoptic maps, obtained by the longest homogeneous series of magnetic field observations for the past several decades. We found that the anomaly was due to the uneven clustering of positive and negative surface magnetic fields that occurred during the solar minimum leading to the last extended solar cycle. Our findings may provide new insight into magnetic field characteristics peculiar to a solar minimum with an extended cycle length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Altschuler, M.D., Newkirk, G.: 1969, Magnetic fields and the structure of the solar corona. I: methods of calculating coronal fields. Solar Phys. 9, 131.

    Article  ADS  Google Scholar 

  • Bakus, G.: 2007, Quantitative Analysis of Marine Biological Communities: Field Biology and Environment, Wiley-Interscience, Hoboken. Wiley.

    Book  Google Scholar 

  • Borrero, J.M., Ichimoto, K.: 2011, Magnetic structure of sunspots. Living Rev. Solar Phys. 8, 4.

    Article  ADS  Google Scholar 

  • Clette, F., Svalgaard, L., Vaquero, J.M., Cliver, E.W.: 2014, Revisiting the sunspot number. A 400-year perspective on the solar cycle. Space Sci. Rev. 186, 35.

    Article  ADS  Google Scholar 

  • Clyne, J., Mininni, P., Norton, A., Rast, M.: 2007, Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation. New J. Phys. 9, 301.

    Article  ADS  Google Scholar 

  • Delaboudinire, J., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., Van Dessel, E.L.: 1995, EIT: Extreme-ultraviolet Imaging Telescope for the SOHO mission. Solar Phys. 162, 291.

    Article  ADS  Google Scholar 

  • Duvall, T.L. Jr., Wilcox, J.M., Svalgaard, L., Scherrer, P.H., McIntosh, P.S.: 1977, Comparison of \(\text{H}\alpha \) synoptic charts with the large-scale solar magnetic field as observed at Stanford. Solar Phys. 55, 63.

    Article  ADS  Google Scholar 

  • Fan, Y.: 2001, The emergence of a twisted \(\Omega \)-tube into the solar atmosphere. Astrophys. J. Lett. 554, 111.

    Article  ADS  Google Scholar 

  • Hale, G.E.: 1924, Sun-spots as magnets and the periodic reversal of their polarity. Nature 113, 105.

    Article  ADS  Google Scholar 

  • Hathaway, D.H.: 2015, The solar cycle. Living Rev. Solar Phys. 12, 1.

    Article  ADS  Google Scholar 

  • Hoeksema, T., Scherrer, P.: 1986, An atlas of photospheric magnetic field observations and computed coronal magnetic fields: 1976–1985. Solar Phys. 105, 205.

    Article  ADS  Google Scholar 

  • Imada, S., Fujiyama, M.: 2018, Effect of magnetic field strength on solar differential rotation and meridional circulation. Astrophys. J. 864, L5.

    Article  ADS  Google Scholar 

  • Jeong, H., Chae, J.: 2007, Magnetic helicity injection in active regions. Astrophys. J. 671, 1022.

    Article  ADS  Google Scholar 

  • Knaack, R., Stenflo, J.O., Berdyugina, S.V.: 2005, Evolution and rotation of large-scale photospheric magnetic fields of the Sun during cycles 21–23. Periodicities, North–South asymmetries and r-mode signatures. Astron. Astrophys. 438, 1067.

    Article  ADS  Google Scholar 

  • Lites, B.W., Low, B.C., Martines Pillet, V., Seagraves, P., Skumanich, A., Frank, Z.A., Shine, R.A., Tsuneta, S.: 1995, The possible ascent of a closed magnetic system through the photosphere. Astrophys. J. 446, 877L.

    Article  ADS  Google Scholar 

  • Low, B.C.: 1996, Solar activity and the corona. Solar Phys. 167, 217.

    Article  ADS  Google Scholar 

  • Magara, T.: 2009, Characteristic development of magnetic shear in a flare-producing sunspot obtained from vector magnetic field measurements by Hinode. Astrophys. J. 702, 386.

    Article  ADS  Google Scholar 

  • Magara, T.: 2017, An inversion method for deriving physical properties of a subsurface magnetic field from surface magnetic field evolution I. Application to simulated data. J. Korean Astron. Soc. 50, 179.

    ADS  Google Scholar 

  • Maunder, E.W.: 1922, The Sun and Sun-spots, 1820–1920. Mon. Not. Roy. Astron. Soc. 82, 534.

    Article  ADS  Google Scholar 

  • Morisita, M.: 1959, Measuring of the dispersion and analysis of distribution patterns. Mem. Fac. Sci. Kyushu Univ., Ser. E 2, 215.

    Google Scholar 

  • Muoz-Jaramillo, A., Vaquero, J.M.: 2019, Visualization of the challenges and limitations of the long-term sunspot number record. Nat. Astron. 3, 205.

    Article  ADS  Google Scholar 

  • Nakamizo, A., Tanaka, T., Kubo, Y., Kamei, S., Shimazu, H., Shinagawa, H.: 2009, Development of the 3-D MHD model of the solar corona-solar wind combining system. J. Geophys. Res. 114, A07109.

    ADS  Google Scholar 

  • Reeves, E.M., Huber, M.C.E., Timothy, J.G.: 1977, Extreme UV spectroheliometer on the Apollo Telescope Mount. Appl. Opt. 16, 837.

    Article  ADS  Google Scholar 

  • Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys. 6, 442.

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Wilcox, J.M., Svalgaard, L., Duvall, T.L., Dittmer, P.H., Gustafson, E.K.: 1977, The mean magnetic field of the Sun: observations at Stanford. Solar Phys. 54, 353.

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I. (MDI Engineering Team): 1995, The solar oscillations investigation – Michelson Doppler Imager. Solar Phys. 162, 129.

    Article  ADS  Google Scholar 

  • Schwabe, M.: 1844, Sonnenbeobachtungen im Jahre 1843. Von Herrn Hofrath Schwabe in Dessau. Astron. Nachr. 21, 233.

    Article  ADS  Google Scholar 

  • Siu-Tapia, A., Lagg, A., van Noort, M., Rempel, M., Solanki, S.: 2019, Superstrong photospheric magnetic fields in sunspot penumbrae. Astron. Astrophys. 631, 99.

    Article  Google Scholar 

  • Snyder, J.P.: 1987, Map projections – a working manual. US Government Printing Office, 1395.

  • Sokoloff, D., Nesme-Ribes, E.: 1994, The Maunder minimum: a mixed-parity dynamo mode? Astron. Astrophys. 288, 293.

    ADS  Google Scholar 

  • Solanki, S.K., Schüssler, M., Fligge, M.: 2000, Evolution of the Sun’s large-scale magnetic field since the Maunder minimum. Nature 408, 445.

    Article  ADS  Google Scholar 

  • Stix, M.: 1991, The Sun: An Introduction, Astronomy and Astrophysics Library, Springer, Berlin, 301.

    Google Scholar 

  • Tanaka, K.: 1991, Studies on a very flare-active \(\delta \) group: peculiar \(\delta\) spot evolution and inferred subsurface magnetic rope structure. Solar Phys. 136, 13.

    Article  Google Scholar 

  • Virtanen, I., Mursula, K.: 2017, Photospheric and coronal magnetic fields in six magnetographs. II. Harmonic scaling of field intensities. Astron. Astrophys. 604, 7.

    Article  ADS  Google Scholar 

  • Zwaan, C.: 1985, The emergence of magnetic flux. Solar Phys. 100, 397.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge detailed comments and suggestions by G. Choe and S. Solanki which were very helpful for improving the manuscript. We also appreciate the reviewer’s useful comments. We used the synoptic charts of the Sun’s large-scale magnetic field provided by Wilcox Solar Observatory, Stanford University (http://wso.stanford.edu). The EUV and MDI data used here are produced by the SOHO/EIT and SOHO/MDI Consortiums; SOHO is a joint ESA-NASA program. Figure 4a was made using VAPOR (Clyne et al., 2007). This work was financially supported by the Core Research Program (NRF-2017R1A2B4002383) through the National Research Foundation of Korea (NRF) funded by the Korean government (MIST), as well as by the BK21 plus program through the NRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Magara.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magara, T., An, J., Lee, H. et al. Aggregation Characteristics of the Sun’s Large-Scale Magnetic Field Associated with a Global Magnetic Anomaly in the Last Extended Solar Cycle. Sol Phys 296, 41 (2021). https://doi.org/10.1007/s11207-021-01782-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01782-9

Keywords

Navigation