Skip to main content
Log in

Numerical Analysis of the Particle Dynamics in a Supersonic Gas Stream with a Modified Point-Particle Euler–Lagrange Approach

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Numerical simulations of a gas-particle jet through a Laval nozzle are performed using a modified point-particle Euler–Lagrange approach. By excluding the particle-occupied fluid fraction when solving the fluid phase equations and accounting for gas-particle and inter-particle interactions in the mathematical framework, the particle motion behaviors in gas stream and their impact on gas stream structure are studied, and the nonequilibrium dynamics of the two-phase flow are revealed by depicting the particle velocity and temperature evolution in gas stream. The results indicate that the preferential concentration of particles occurs in gas stream, resulting in nonuniform jet structure. The preferential concentration mainly occurs in nozzle divergent section and makes the local flows there lie in dense regime even if a dilute two-phase flow is predetermined. The level of the preferential concentration increases when the powder feeding rate or the particle size increases. Thus, it is necessary to consider the volumetric displacement effect of dispersed phase when modelling such a gas-particle jet system. Based on the impact of powder blowing parameters on particles motion and distribution and oxygen jet structure, the powder feeding rate no more than 2.0 kg/s and the particle size of 50 to 100 µm are suggested for real industrial operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. [1] S. Kitamura: ISIJ Int., 2017, vol. 57, pp. 1670-76.

    Article  CAS  Google Scholar 

  2. [2] M. Miyata, T. Tamura, and Y. Higuchi: ISIJ Int. 2017, vol. 57, pp. 1751-55.

    Article  CAS  Google Scholar 

  3. [3] M. Miyata, T. Tamura, and Y. Higuchi: ISIJ Int. 2017, vol. 57, pp. 1756-61.

    Article  CAS  Google Scholar 

  4. [4] Z. Miao, S.B. Kuang, H. Zughbiand, and A.B. Yu: Powder Technol. 2019, vol. 349, pp. 70-83.

    Article  CAS  Google Scholar 

  5. [5] J.H. Geng, and H. Groenig: Exp. Fluids, 2000, vol. 28, pp. 360-67.

    Article  CAS  Google Scholar 

  6. [6] S. Okuda, and W.S. Choi: J. Chem. Eng. Jpn. 1978, vol. 11, pp. 432-38.

    Article  CAS  Google Scholar 

  7. [7] S. Chellappan, and G. Ramaiyan: Power Technol. 1986, vol. 48, pp. 141-44.

    Article  CAS  Google Scholar 

  8. [8] H. H. Shi, and Y. Kazuki: Acta Mech. Sinica, 2004, vol. 20, pp. 219-27.

    Article  Google Scholar 

  9. [9] Q. Li, Z.S. Zou, and S.M. Tan: Steel Res. Int. 2005, vol. 76, pp. 699-705.

    Article  CAS  Google Scholar 

  10. [10] K. Chojnicki, A.B. Clarke, and J.C. Phillips: Geophys. Res. Lett. 2006, vol. 33, pp. 55-60.

    Article  Google Scholar 

  11. [11] X.Y. Wang, F. Jiang, X. Xu, B.G. Fan, J. Lei, and Y.H. Xiao: Power Technol. 2010, vol. 199, pp. 203-12.

    Article  CAS  Google Scholar 

  12. [12] Z.Y. Zhou, S.B. Kuang, K.W. Chu, and A.B. Yu: J. Fluid Mech. 2010, vol. 661, pp. 482-510.

    Article  Google Scholar 

  13. [13] S.B. Kuang, M.M. Zhou, and A.B. Yu: Powder Technol. 2020, vol. 365, pp. 186-207.

    Article  CAS  Google Scholar 

  14. S.B. Kuang, Z.Y. Li, and A.B. Yu: Steel Res. Int. 2018, vol. 89, pp. 1700071-1/25.

  15. [15] H.P. Zhu, Z.Y. Zhou, R.Y. Yang, and A.B. Yu: Chem. Eng. Sci. 2007, vol. 62, pp. 3378-96.

    Article  CAS  Google Scholar 

  16. [16] Y.Q. Feng, and A.B. Yu: Ind. Eng. Chem. Res. 2004, vol. 43, pp. 8378-90.

    Article  CAS  Google Scholar 

  17. [17] P. Cundall, and O. Strack: Geotechnique, 1979, vol. 29, pp. 47-65.

    Article  Google Scholar 

  18. [18] S.V. Apte, K. Mahesh, and T. Lundgren: Int. J. Multiphase Flow, 2008, vol. 34, pp. 260-71.

    Article  CAS  Google Scholar 

  19. [19] M.R. Maxey: J. Fluid Mech. 1987, vol. 174, pp. 441-65.

    Article  Google Scholar 

  20. [20] M.R. Maxey, and J.J. Riley: Phys. Fluid. 1983, vol. 26, pp. 883-89.

    Article  Google Scholar 

  21. [21] K.D. Squires, and J.K. Eaton: Phys. Fluid A, 1991, vol. 3, pp. 1169-78.

    Article  CAS  Google Scholar 

  22. C.T. Crowe, J.D. Schwarzkopf, M. Sommerfeld, and Y. Tsuji: Multiphase Flows with Droplets and Particles. 2011, CRC Press, London, pp. 237-58.

    Book  Google Scholar 

  23. [23] R. Ishii, Y. Umeda, and M. Yuhi: J. Fluid Mech. 1989, vol. 203, pp. 475-15.

    Article  CAS  Google Scholar 

  24. [24] Y. Liu: Med. Bio. Comput. 2006, vol. 44, pp. 551-59.

    Article  Google Scholar 

  25. [25] M.B. Stakić, G.S. Živković, and M.A. Sijerčić: Int. J. Heat Mass Tran. 2011, vol. 54, pp. 2262-69.

    Article  Google Scholar 

  26. [26] Y. Liu, J. Zhang, J.P. Wei, and X.T. Liu: Powder Technol. 2020, vol. 364, pp. 343-62.

    Article  CAS  Google Scholar 

  27. [27] M. Miyata, and Y. Higuchi: ISIJ Int. 2017, vol. 57, pp. 1742-50.

    Article  CAS  Google Scholar 

  28. [28] G.S. Wei, Y.H. Peng, R. Zhu, L.Z. Yang, and X.T. Wu: ISIJ Int. 2020, vol. 60, pp. 481-91.

    Article  CAS  Google Scholar 

  29. [29] M.M. Li, L. Li, B. Zhang, Q. Li, W. Wu, and Z.S. Zou: Metall. Mater. Trans. B, 2020, vol. 51, pp. 1718-30.

    Article  Google Scholar 

  30. [30] Y.S. Shen, D. Maldonado, B.Y. Guo, A.B. Yu, P. Austin, and P. Zulli: Ind. Eng. Chem. Res. 2009, vol. 48, pp. 10314-23.

    Article  CAS  Google Scholar 

  31. [31] Y.S. Shen, A.B. Yu, and P. Zulli: Steel Res. Int. 2011, vol. 82, pp. 532-42.

    Article  CAS  Google Scholar 

  32. [32] Y.S. Shen, B.Y. Guo, A.B. Yu, P.R. Austin, and P. Zulli: Fuel, 2011, vol. 90, pp. 728-38.

    Article  CAS  Google Scholar 

  33. [33] J.H. Liao, A.B. Yu, and Y.S. Shen: Powder Technol. 2017, vol. 314, pp. 550-56.

    Article  CAS  Google Scholar 

  34. [34] Y.S. Shen, B.Y. Guo, A.B. Yu, D. Maldonado, P. Austin, and P. Zulli: ISIJ Int. 2008, vol. 48, pp. 777-86.

    Article  CAS  Google Scholar 

  35. [35] Y.S. Shen, and A.B. Yu: Miner. Eng. 2016, vol. 90, pp. 89-95.

    Article  CAS  Google Scholar 

  36. [37] J.L. Sinclair, and R. Jackson: AICHE J. 1989, vol. 35, pp. 1473-86.

    Article  CAS  Google Scholar 

  37. [38] M. Sommerfeld: ASME/FED Gas-Particle Flows, 1995, vol. 228, pp. 335-45.

    CAS  Google Scholar 

  38. [39] T. Tanaka, and Y. Tsuji: ASME/FED Gas-Particle Flows, 1991, vol. 121, pp. 123-28.

    Google Scholar 

  39. [40] R. Cocco, F. Shaffer, R. Hays, S.B.R. Karri, and T. Knowltoa: Powder Technol. 2010, vol. 203, pp. 3-11.

    Article  CAS  Google Scholar 

  40. [36] P. Pakseresht, and S.V. Apte: Int. J. Multiphase Flow, 2019, vol. 113, pp. 16-32.

    Article  CAS  Google Scholar 

  41. [41] Y.C. Peng, and T. Han: ISIJ Int. 1996, vol. 36, pp. 263-68.

    Article  CAS  Google Scholar 

  42. [42] S.V. Apte, K. Mahesh, P. Moin, and J.C. Oefelein: Int. J. Multiphase Flow, 2003, vol. 29, pp. 1311-31.

    Article  CAS  Google Scholar 

  43. [43] M. Alam, J. Naser, and G. Brooks: Metall. Mater. Trans. B, 2010, vol. 41, pp. 636-45.

    Article  CAS  Google Scholar 

  44. [44] M. Alam, J. Naser, G. Brooks and A. Fontana: Metall. Mater. Trans. B, 2010, vol. 41, pp. 1354-67.

    Article  Google Scholar 

  45. [45] R. Sambasivam, and F. Durst: Ironmak. Steelmak., 2010, vol. 37, pp. 195-203.

    Article  CAS  Google Scholar 

  46. [46] Z.L. Song, M. Ersson, and P.G. Jönsson: Steel Res. Int., 2011, vol. 82, pp. 249-59.

    Article  CAS  Google Scholar 

  47. [47] Z.L. Song, M. Ersson, and P.G. Jönsson: ISIJ Int., 2011, vol. 51, pp. 1637-46.

    Article  CAS  Google Scholar 

  48. [48] S. Elghobashi: Appl. Sci. Res. 1991, vol. 48, pp. 301-14.

    Article  Google Scholar 

  49. [49] M.M. Li, Q. Li, S.B. Kuang, and Z.S. Zou: Steel Res. Int. 2015, vol. 86, pp. 1517-29.

    Article  CAS  Google Scholar 

  50. FLUENT 14.5 Manual, Ansys Inc., Canonsburg, PA, 2011.

  51. [51] B.E. Launder, and D.B. Spalding: Comput. Methods Appl. Mech. Eng. 1974, vol. 3, pp. 269-89.

    Article  Google Scholar 

  52. [52] R. Clift, and W.H. Gauvin: Revista Argentina De Cardiología, 1970, vol. 82, pp. 14-28.

    Google Scholar 

  53. [53] S. Tenneti, R. Garg, and S. Subramaniam: Int. J. Multiphase Flow, 2011, vol. 37, pp. 1072-92.

    Article  CAS  Google Scholar 

  54. [54] M. Ishii, and N. Zuber: AICHE J. 1979, vol. 25, pp. 843-55.

    Article  CAS  Google Scholar 

  55. [55] J.R. Brock: J. Colloid Interf. Sci. 1967, vol. 25, pp. 392-95.

    Article  CAS  Google Scholar 

  56. P. Orourke, and F. Bracco: Proc. Inst. Mech. Eng., 1980, vol. 9, pp. 101-06.

    Google Scholar 

  57. [57] N. Patankar, and D. Joseph: Int. J. Multiphase Flow, 2001b, vol. 27, pp. 1659-84.

    Article  CAS  Google Scholar 

  58. [58] J.R. Finn, M. Li, and S.V. Apte: J. Fluid Mech. 2016, vol. 796, pp. 340-85.

    Article  CAS  Google Scholar 

  59. [59] P. Gualtieri, F. Picano, G. Sardina, and C.M. Casciola: J. Fluid Mech. 2015, vol. 773, pp. 520-61.

    Article  CAS  Google Scholar 

  60. [60] J. Horwitz, and A. Mani: J. Comput. Phys. 2016, vol. 318, pp. 85-109.

    Article  CAS  Google Scholar 

  61. [61] M. Esmaily, and J. Horwitz: J. Comput. Phys. 2018, vol. 375, pp. 960-82.

    Article  Google Scholar 

  62. [62] S. Balachandar, K. Liu, and M. Lakhote: J. Comput. Phys. 2019, vol. 376, pp. 160-85.

    Article  CAS  Google Scholar 

  63. [63] P. Pakseresht, M. Esmaily, and S.V. Apte: J. Comput. Phys. 2020, vol. 420, No. 109711, pp. 1-23.

    Google Scholar 

  64. [64] S.A. Morsi, and A.J. Alexander: J. Fluid Mech. 1972, vol. 55, pp. 193-208.

    Article  Google Scholar 

  65. Y.A. Cengel, and J.M. Cimbala: Fluid Mechanics: Fundamentals and Applications, 2nd ed., McGraw-Hill, New York, 2013.

    Google Scholar 

  66. [67] J. Yan, K. Luo, J.R. Fan, and G. Xiao: Journal of Chemical Industry and Engineering, 2008, vol. 59, pp. 866-74.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support provided by the National Natural Science Foundation of China (51904062), the China Postdoctoral Science Foundation (2019M650056) and the Fundamental Research Funds of the Central Universities of China (N2025015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingming Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 21, 2020; accepted January 10, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Li, L., Shao, L. et al. Numerical Analysis of the Particle Dynamics in a Supersonic Gas Stream with a Modified Point-Particle Euler–Lagrange Approach. Metall Mater Trans B 52, 1034–1051 (2021). https://doi.org/10.1007/s11663-021-02076-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02076-y

Navigation