Skip to main content
Log in

The effect of asymmetrical gait induced by unilateral knee brace on the knee flexor and extensor muscles

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Asymmetrical stiff knee gait is a mechanical pathology that can disrupt lower extremity muscle coordination. A better understanding of this condition can help identify potential complications. This study proposes the use of dynamic musculoskeletal modelling simulation to investigate the effect of induced mechanical perturbation on the kneeand to examine the muscle behaviour without invasive technique. Thirty-eight healthy participants were recruited. Asymmetrical gait was simulated using knee brace. Knee joint angle, joint moment and knee flexor and extensor muscle forces were computed using OpenSim. Differences inmuscle force between normal and abnormal conditions were investigated using ANOVA and Tukey-Kramer multiple comparison test.The results revealed that braced knee experienced limited range of motion with smaller flexion moment occuring at late swing phase. Significant differences were found in all flexormuscle forces and in several extensor muscle forces (p<0.05). Normal knee produced larger flexor muscle force than braced knee. Braced knee generated the largest extensor muscle force at early swing phase. In summary, musculoskeletal modelling simulation can be a computational tool to map and detect the differences between normal and asymmetrical gaits.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SKG:

Stiff knee gait

VL:

Vastus lateralis

VI:

Vastus intermedius

VM:

Vastus medialis

RF:

Rectus femoris

sEMG:

Surface electromyography

ACL:

Anterior cruciate ligament

CMC:

Computed muscle control

BFSH:

Short head of biceps femoris

BFLH:

Long head of biceps femoris

ANOVA:

Analysis of variance

References

  1. Lewek MD, Osborn AJ, Wutzke CJ (2012) The influence of mechanically and physiologically imposed stiff-knee gait patterns on the energy cost of walking. Arch Phys Med Rehab 93(1):123–128. https://doi.org/10.1016/j.apmr.2011.08.019

    Article  Google Scholar 

  2. Hutin E, Pradon D, Barbier F, Bussel B, Gracies J, Roche N (2012) Walking velocity and lower limb coordination in hemiparesis. Gait Posture 36(2):205–211. https://doi.org/10.1016/j.gaitpost.2012.02.016

    Article  PubMed  Google Scholar 

  3. Lauzière S, Betschart M, Aissaoui R, Nadeau S (2014) Understanding spatial and temporal gait asymmetries in individuals post stroke. Int J Phys Med Rehabil 2(3):201. https://doi.org/10.4172/2329-9096.1000201

    Article  Google Scholar 

  4. Goldberg SR, Anderson FC, Pandy MG, Delp SL (2004) Muscles that influence knee flexion velocity in double support: implications for stiff-knee gait. J Biomech 37(8):1189–1196. https://doi.org/10.1016/j.jbiomech.2003.12.005

    Article  PubMed  Google Scholar 

  5. Perttunen JR, Anttila E, Södergård J, Merikanto J, Komi PV (2004) Gait asymmetry in patients with limb length discrepancy. Scand J Med Sci Spor 14(1):49–56. https://doi.org/10.1111/j.1600-0838.2003.00307.x

  6. Richards C, Higginson JS (2010) Knee contact force in subjects with symmetrical OA grades: differences between OA severities. J Biomech 43(13):2595–2600. https://doi.org/10.1016/j.jbiomech.2010.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ogaya S, Kubota R, Chujo Y, Hirooka E, Ito K, Kwang-ho K, Hase K (2018) Potential of muscles to accelerate the body during late-stance forward progression in individuals with knee osteoarthritis. Hum Movement Sci 61:109–116. https://doi.org/10.1016/j.humov.2018.07.012

    Article  Google Scholar 

  8. Hart HF, Collins NJ, Ackland DC, Cowan SM, Hunt MA, Crossley KM (2016) Immediate effects of a brace on gait biomechanics for predominant lateral knee osteoarthritis and valgus malalignment after anterior cruciate ligament reconstruction. Am J Sport Med 44(4):865–873. https://doi.org/10.1177/0363546515624677

    Article  Google Scholar 

  9. Perry J (1992) Gait analysis: normal and pathological function. West Deptford Township, NJ, SLACK

    Google Scholar 

  10. Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E, Thelen DG (2007) OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng 54(11):1940–1950. https://doi.org/10.1109/TBME.2007.901024

    Article  PubMed  Google Scholar 

  11. Lee L, Umberger BR (2016) Generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB. PeerJ 4:e1638. https://doi.org/10.7717/peerj.1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goldberg SR, Õunpuu S, Delp SL (2003) The importance of swing-phase initial conditions in stiff-knee gait. J Biomech 36(8):1111–1116. https://doi.org/10.1016/s0021-9290(03)00106-4

    Article  PubMed  Google Scholar 

  13. Higginson J, Zajac F, Neptune R, Kautz S, Delp SL (2006) Muscle contributions to support during gait in an individual with post-stroke hemiparesis. J Biomech 39(10):1769–1777. https://doi.org/10.1016/j.jbiomech.2005.05.032

    Article  CAS  PubMed  Google Scholar 

  14. Hall AL, Peterson CL, Kautz SA, Neptune RR (2011) Relationships between muscle contributions to walking subtasks and functional walking status in persons with post-stroke hemiparesis. Clinical biomechanics (Bristol, Avon) 26(5):509–515. https://doi.org/10.1016/j.clinbiomech.2010.12.010

    Article  CAS  PubMed Central  Google Scholar 

  15. Akbas T, Neptune RR, Sulzer J (2019) Neuromusculoskeletal simulation reveals abnormal rectus femoris-gluteus medius coupling in post-stroke gait. Front Neurol 10:301–310. https://doi.org/10.3389/fneur.2019.00301

    Article  PubMed  PubMed Central  Google Scholar 

  16. Oh J, Eltoukhy M, Kuenze C, Andersen MS, Signorile JF (2020) Comparison of predicted kinetic variables between Parkinson’s disease patients and healthy age-matched control using a depth sensor-driven full-body musculoskeletal model. Gait Posture 76:151–156. https://doi.org/10.1016/j.gaitpost.2019.11.011

    Article  PubMed  Google Scholar 

  17. Olney SJ, Richards C (1996) Hemiparetic gait following stroke. Part I: Characteristics. Gait Posture 4(2):136–148. https://doi.org/10.1016/0966-6362(96)01063-6

    Article  Google Scholar 

  18. Androwis GJ, Pilkar R, Ramanujam A, Nolan KJ (2018) Electromyography assessment during gait in a robotic exoskeleton for acute stroke. Front Neurol 9. https://doi.org/10.3389/fneur.2018.00630

  19. Steele KM, Seth A, Hicks JL, Schwartz MS, Delp SL (2010) Muscle contributions to support and progression during single-limb stance in crouch gait. J Biomech 43(11):2099–2105. https://doi.org/10.1016/j.jbiomech.2010.04.003

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bojanic DM, Petrovacki-Balj BD, Jorgovanovic ND, Ilic VR (2011) Quantification of dynamic EMG patterns during gait in children with cerebral palsy. J Neurosci Methods 198(2):325–331. https://doi.org/10.1016/j.jneumeth.2011.04.030

    Article  PubMed  Google Scholar 

  21. Adouni M, Shirazi-Adl A (2013) Evaluation of knee joint muscle forces and tissue stresses-strains during gait in severe OA versus normal subjects. J Orthop Res 32(1):69–78. https://doi.org/10.1002/jor.22472

    Article  PubMed  Google Scholar 

  22. Delafontaine A, Fourcade P, Honeine JL, Ditcharles S, Yiou E (2018) Postural adaptations to unilateral knee joint hypomobility induced by orthosis wear during gait initiation. Sci Rep 8(1):830. https://doi.org/10.1038/s41598-018-19151-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Delafontaine A, Honeine JL, Do MC, Gagey O, Chong RK (2015) Comparative gait initiation kinematics between simulated unilateral and bilateral ankle hypomobility: does bilateral constraint improve speed performance? Neurosci Lett 603:55–59. https://doi.org/10.1016/j.neulet.2015.07.016

    Article  CAS  PubMed  Google Scholar 

  24. C-Motion (2011) Marker set guidelines. https://www.c-motion.com/v3dwiki/index.php?title=Marker_Set_Guidelines. Accessed 19 July 2020.

  25. Stanhope SJ, Kepple TM, McGuire DA, Roman NL (1990) Kinematic-based technique for event time determination during gait. Med Biol Eng Comput 28(4):355–360. https://doi.org/10.1007/BF02446154

    Article  CAS  PubMed  Google Scholar 

  26. OpenSim (2012) Gait 2392 and 2354 models. https://simtk-confluence.stanford.edu/display/OpenSim/Gait+2392+and+2354+Models. Accessed 21 November 2020.

  27. Delp S, Loan J, Hoy M, Zajac F, Topp E, Rosen J (1990) An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans Biomed Eng 37(8):757–767. https://doi.org/10.1109/10.102791

    Article  CAS  PubMed  Google Scholar 

  28. Thelen DG, Anderson FC (2006) Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. J Biomech 39(6):1107–1115. https://doi.org/10.1016/j.jbiomech.2005.02.010

    Article  PubMed  Google Scholar 

  29. Thelen DG, Anderson FC, Delp SL (2003) Generating dynamic simulations of movement using computed muscle control. J Biomech 36(3):321–328. https://doi.org/10.1016/s0021-9290(02)00432-3

    Article  PubMed  Google Scholar 

  30. C-Motion (2011) Visual3D to OpenSim Demo. https://www.c-motion.com/v3dwiki/index.php?title=Visual3D_to_OpenSim_Demo. Accessed 10 May 2020.

  31. Hicks J (2018) Tutorial 1 - Intro to musculoskeletal modeling, https://simtk-confluence.stanford.edu:8443/display/OpenSim/Tutorial+1+-+Intro+to+Musculoskeletal+Modeling. Accessed 10 May 2020.

  32. Trinler U, Schwameder H, Baker R, Alexander N (2019) Muscle force estimation in clinical gait analysis using AnyBody and OpenSim. J Biomech 86:55–63. https://doi.org/10.1016/j.jbiomech.2019.01.045

    Article  PubMed  Google Scholar 

  33. Anang N, Jailani R, Tahir NM, Manaf H, Mustafah N (2016) Analysis of kinematic gait parameters in stroke with diabetic peripheral neuropathy (DPN). 2016 IEEE Conference on Systems, Process and Control (ICSPC), Bandar Hilir, 136-141, https://doi.org/10.1109/SPC.2016.7920718.

  34. Seo JP, Do KH, Jung GS, Seo SW, Kim K, Son SM, Kim YK, Jang SH (2014) The difference of gait pattern according to the state of the corticospinal tract in chronic hemiparetic stroke patients. NeuroRehabilitation. 34(2):259–266. https://doi.org/10.3233/NRE-131046

    Article  PubMed  Google Scholar 

  35. Akbas T, Prajapati S, Ziemnicki D, Tamma P, Gross S, Sulzer J (2019) Hip circumduction is not a compensation for reduced knee flexion angle during gait. J Biomech 18(87):150–156. https://doi.org/10.1016/j.jbiomech.2019.02.026

    Article  Google Scholar 

  36. Mazzoli D, Giannotti E, Manca M, Longhi M, Prati P, Cosma M, Ferraresi G, Morelli M, Zerbinati P, Masiero S, Merlo A (2018) Electromyographic activity of the vastus intermedius muscle in patients with stiff-knee gait after stroke. A retrospective observational study. Gait Posture 60:273–278. https://doi.org/10.1016/j.gaitpost.2017.07.002

    Article  PubMed  Google Scholar 

  37. Apti A, Akalan NE, Kuchimov S, Özdinçler AR, Temelli Y, Nene A (2016) Plantar flexor muscle weakness may cause stiff-knee gait. Gait Posture. 46:201–207. https://doi.org/10.1016/j.gaitpost.2016.03.010

    Article  PubMed  Google Scholar 

  38. Reinbolt JA, Fox MD, Arnold AS, Ounpuu S, Delp SL (2008) Importance of preswing rectus femoris activity in stiff-knee gait. J Biomech. 41(11):2362–2369. https://doi.org/10.1016/j.jbiomech.2008.05.030

    Article  PubMed  PubMed Central  Google Scholar 

  39. Brandsson S, Faxén E, Kartus J, Eriksson BI, Karlsson J (2001) Is a knee brace advantageous after anterior cruciate ligament surgery? A prospective, randomised study with a two-year follow-up. Scand J Med Sci Sports. 11(2):110–114. https://doi.org/10.1034/j.1600-0838.2001.011002110.x

    Article  CAS  PubMed  Google Scholar 

  40. Iijima H, Inoue M, Suzuki Y, Shimoura K, Aoyama T, Madoba K, Takahashi M (2020) Contralateral limb effect on gait asymmetry and ipsilateral pain in a patient with knee osteoarthritis: a proof-of-concept case report. JBJS Case Connect 10(1):e0418. https://doi.org/10.2106/JBJS.CC.19.00418

    Article  PubMed  Google Scholar 

  41. Delafontaine A, Gagey O, Colnaghi S, Do MC, Honeine JL (2017) Rigid ankle foot orthosis deteriorates mediolateral balance control and vertical braking during gait initiation. Front Hum Neurosci 11:214. https://doi.org/10.3389/fnhum.2017.00214

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bordes P, Laboute E, Bertolotti A, Dalmay JF, Puig P, Trouve P, Verhaegue E, Joseph PA, Dehail P, de Seze M (2017) No beneficial effect of bracing after anterior cruciate ligament reconstruction in a cohort of 969 athletes followed in rehabilitation. Ann Phys Rehabil Med. 60(4):230–236. https://doi.org/10.1016/j.rehab.2017.02.001

    Article  CAS  PubMed  Google Scholar 

  43. Ramstrand N, Gjøvaag T, Starholm IM, Rusaw DF (2019) Effects of knee orthoses on kinesthetic awareness and balance in healthy individuals. J Rehabil Assist Technol Eng. 6:205566831985253. https://doi.org/10.1177/2055668319852537

    Article  Google Scholar 

  44. Kernozek T, Torry M, Shelburne K, Durall DJ, Willson J (2013) From the gait laboratory to the rehabilitation clinic: translation of motion analysis and modeling data to interventions that impact anterior cruciate ligament loads in gait and drop landing. Crit Rev Biomed Eng 41(3):243–258. https://doi.org/10.1615/critrevbiomedeng.2014010676

    Article  PubMed  Google Scholar 

  45. Escamilla RF, Macleod TD, Wilk KE, Paulos L, Andrews RJ (2012) ACL strain and tensile forces for weight bearing and non-weight-bearing exercises after acl reconstruction: a guide to exercise selection. J Orthop Sport Phys 42(3):208–220. https://doi.org/10.2519/jospt.2012.3768

    Article  Google Scholar 

  46. Webster JB, Darter BJ (2019) Principles of normal and pathologic gait. In Atlas of orthoses and assistive devices (5th ed., pp. 49-62.e1). Retrieved from https://doi.org/10.1016/C2014-0-04193-7

  47. Stanhope VA, Knarr BA, Reisman DS, Higginson JS (2014) Frontal plane compensatory strategies associated with self-selected walking speed in individuals post-stroke. Clin Biomech (Bristol, Avon). 29(5):518–522. https://doi.org/10.1016/j.clinbiomech.2014.03.013

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kerrigan DC, Frates EP, Rogan S, Riley PO (2000) Hip hiking and circumduction: quantitative definitions. Am J Phys Med Rehabil. 79(3):247–252. https://doi.org/10.1097/00002060-200005000-00006

    Article  CAS  PubMed  Google Scholar 

  49. Kuriki HU, De Azevedo FM, Takahashi LS, Mello EM, De Faria Negrão Filho R, Alves N (2012) The relationship between electromyography and muscle force. In M. Schwartz (Ed.), EMG methods for evaluating muscle and nerve function (pp. 32-54), Retrieved from https://www.intechopen.com/books/emg-methods-for-evaluating-muscle-and-nerve-function/the-relationship-between-electromyography-and-muscle-force

  50. Schmitz A, Norberg J (2019) Calculation of muscle activity during race walking. The Journal of Open Engineering. https://doi.org/10.21428/9d720e7a.62c465f4

  51. Lin YC, Dorn TW, Schache AG, Pandy MG (2012) Comparison of different methods for estimating muscle forces in human movement. Proc Inst Mech Eng H. 226(2):103–112. https://doi.org/10.1177/0954411911429401

    Article  PubMed  Google Scholar 

  52. Liu MQ, Anderson FC, Schwartz MH, Delp SL (2008) Muscle contributions to support and progression over a range of walking speeds. J Biomech 41(15):3243–3252. https://doi.org/10.1016/j.jbiomech.2008.07.031

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hamner SR, Seth A, Delp SL (2010) Muscle contributions to propulsion and support during running. J Biomech. 43(14):2709–2716. https://doi.org/10.1016/j.jbiomech.2010.06.025

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hamner SR, Delp SL (2013) Muscle contributions to fore-aft and vertical body mass center accelerations over a range of running speeds. J Biomech. 46(4):780–787. https://doi.org/10.1016/j.jbiomech.2012.11.024

    Article  PubMed  Google Scholar 

Download references

Funding

This research is supported by the Ministry of Higher Education, Malaysia (Project Ref. No. FRGS/1/2016/TK03/MUSM/02/1).

Author information

Authors and Affiliations

Authors

Contributions

YYT (first author) and DG conceived and designed the experiment. YYT (first author), DG and AAG conducted experiments. CYZ provided support throughout the experiment. YYT and DG analysed data. YYT and DG wrote the manuscript. AAG and CYZ provided additional ideas and feedback during the writing of the manuscript. All authors read and edited the manuscript. DG, AAG and CYZ approved the final version of manuscript for submission and publication.

Corresponding author

Correspondence to Yap Yi Ting.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yap, Y., Gouwanda, D., Gopalai, A.A. et al. The effect of asymmetrical gait induced by unilateral knee brace on the knee flexor and extensor muscles. Med Biol Eng Comput 59, 711–720 (2021). https://doi.org/10.1007/s11517-021-02337-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02337-7

Keywords

Navigation