Skip to main content
Log in

Numerical Study of Low Rank Approximation Methods for Mechanics Data and Its Analysis

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper proposes a comparison of the numerical aspect and efficiency of several low rank approximation techniques for multidimensional data, namely CPD, HOSVD, TT-SVD, RPOD, QTT-SVD and HT. This approach is different from the numerous papers that compare the theoretical aspects of these methods or propose efficient implementation of a single technique. Here, after a brief presentation of the studied methods, they are tested in practical conditions in order to draw hindsight at which one should be preferred. Synthetic data provides sufficient evidence for dismissing CPD, T-HOSVD and RPOD. Then, three examples from mechanics provide data for realistic application of TT-SVD and ST-HOSVD. The obtained low rank approximation provides different levels of compression and accuracy depending on how separable the data is. In all cases, the data layout has significant influence on the analysis of modes and computing time while remaining similarly efficient at compressing information. Both methods provide satisfactory compression, from 0.1% to 20% of the original size within a few percent error in \(L^2\) norm. ST-HOSVD provides an orthonormal basis while TT-SVD doesn’t. QTT is performing well only when one dimension is very large. A final experiment is applied to an order 7 tensor with \((4 \times 8\times 8\times 64\times 64\times 64\times 64)\) entries (32 GB) from complex multi-physics experiment. In that case, only HT provides actual compression (50%) due to the low separability of this data. However, it is better suited for higher order d. Finally, these numerical tests have been performed with pydecomp , an open source python library developed by the author.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data Availability

The data that support the findings of this study are not available due to change of affiliation of the author. The data used in the last section is obtained through a software that has not been made public at the moment of writing this article and consequently cannot be shared. Synthetic data used in Sect. 4.2 can be directly reproduced using the ipython notebook provided with pydecomp library. For other information, please contact the author.

References

  1. Alimi, J.M., Bouillot, V., Rasera, Y., Reverdy, V., Corasaniti, P., Balmès, I., Requena, S., Delaruelle, X., Richet, J.-N.: First-ever full observable universe simulation. In: International Conference for HPC, Networking, Storage and Analysis, SC (2012)

  2. Chinesta, F., Keunings, R., Leygue, A.: The Proper Generalized Decomposition for Advanced Numerical Simulations. Springer, Berlin (2013)

    MATH  Google Scholar 

  3. Stabile, G., Rozza, G.: Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier-Stokes equations. Comput. Fluids 173, 273–284 (2018)

    Article  MathSciNet  Google Scholar 

  4. Carlberg, K., Farhat, C., Cortial, J., Amsallem, D.: The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows. J. Comput. Phys. 242, 623–647 (2013)

    Article  MathSciNet  Google Scholar 

  5. Lee, K., Carlberg, K.: Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders. J. Comput. Phys. 404, 108973 (2018)

    Article  MathSciNet  Google Scholar 

  6. Kressner, D., Tobler, C.: Low-Rank tensor Krylov subspace methods for parametrized linear systems. SIAM J. Matrix Anal. Appl. 32(4), 1288–1316 (2011)

    Article  MathSciNet  Google Scholar 

  7. Quesada, C., González, D., Alfaro, I., Cueto, E., Chinesta, F.: Computational vademecums for real-time simulation of surgical cutting in haptic environments. Int. J. Numer. Methods Eng. 108(10), 1230–1247 (2016)

    Article  MathSciNet  Google Scholar 

  8. Lestandi, L.: Low rank approximation techniques and reduced order modeling applied to some fluid dynamics problems. Phd. thesis, Université de Bordeaux (2018)

  9. Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)

  10. Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Edu. Psychol. 24(6), 417–441 (1933)

    Article  Google Scholar 

  11. Loève, M.: Probability Theory 9, (1977)

  12. Lumley, J.L.: Coherent structures in turbulence. In: Meyer, R.E. (ed.) Transition and Turbulence, pp. 215–242. Academic Press, Cambridge (1981)

    Chapter  Google Scholar 

  13. Sirovich, L.: Turbulence and the dynamics of coherent structures: I—Coherent structures, II—Symmetries and transformations. III—Dynamics and scaling. Q. Appl. Math. 45, 561 (1987)

  14. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1(3), 211–218 (1936)

    Article  Google Scholar 

  15. Ito, K., Ravindran, S.: A Reduced-order method for simulation and control of fluid flows. J. Comput. Phys. 143, 403 (1998)

    Article  MathSciNet  Google Scholar 

  16. Deane, aE., Kevrekidis, I.G., Karniadakis, G.E., Orszag, Sa.: Low-dimensional models for complex geometry flows: application to grooved channels and circular cylinders. Phys Fluids A Fluid Dyn 3(10), 2337 (1991)

  17. Cazemier, W., Verstappen, R.W.C.P., Veldman, E.P., Introduction, I.: Proper orthogonal decomposition and low-dimensional models for driven cavity flows. Phys. Fluids 10(7), 1685–1699 (1998)

  18. Fahl, M.: Trust-region Methods for flow control based on reduced order modelling. PhD thesis (2001)

  19. Bergmann, M.: Optimisation aérodynamique par réduction de modèle POD et contrôle optimal. Application au sillage laminaire d’un cylindre circulaire. PhD thesis, Institut National Polytechnique de Lorraine / LEMTA (2004)

  20. Hitchcock, F.: Multiple invariants and generalized rank of a p-way matrix or tensor. J. Math. Phys. 7, 39–79 (1927)

    Article  Google Scholar 

  21. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279–311 (1966)

    Article  MathSciNet  Google Scholar 

  22. Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition. Psychometrika 35(3), 283–319 (1970)

  23. Harshman, Ra.: Foundations of the PARAFAC procedure: models and conditions for an explanatory multimodal factor analysis. UCLA Work. Papers Phonetics 16(10), 1–84 (1970)

  24. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  Google Scholar 

  25. Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus, vol. 42. Springer, Berlin (2012)

    Book  Google Scholar 

  26. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)

    Article  MathSciNet  Google Scholar 

  27. de Lathauwer, L., de Moor, B., Vandewalle, J.: On the best rank-1 and rank-(R1, R2,..., RN) approximation of higher order tensors. SIAM J. Matrix Anal. Appl. 21(4), 1324–1342 (2000)

  28. Vannieuwenhoven, N., Vandebril, R., Meerbergen, K.: A new truncation strategy for the higher-order singular value decomposition. SIAM J. Sci. Comput. 34(2), A1027–A1052 (2012)

    Article  MathSciNet  Google Scholar 

  29. Oseledets, I., Tyrtyshnikov, E.E.: Tensor tree decomposition does not need a tree. Preprint, (2009)

  30. Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)

    Article  MathSciNet  Google Scholar 

  31. Khoromskij, B.N.: O(logN)-Quantics approximation of N-d tensors in high-dimensional numerical modeling. Constr. Approx. 34, 257–280 (2011)

    Article  MathSciNet  Google Scholar 

  32. Oseledets, I.V.: Approximation of 2dx2d matrices using tensor decomposition. SIAM J. Matrix Anal. Appl. 31(4), 2130–2145 (2010)

    Article  Google Scholar 

  33. Oseledets, I.V., Dolgov, S., Savostyanov, D.: “ttpy,” (2018)

  34. Ballani, J., Grasedyck, L., Kluge, M.: Black box approximation of tensors in hierarchical tucker format. Linear Algebra Appl. 438(2), 639–657 (2010)

    Article  MathSciNet  Google Scholar 

  35. Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal. Appl. 31(4), 2029–2054 (2010)

    Article  MathSciNet  Google Scholar 

  36. Grasedyck, L., Kressner, D., Tobler, C.: A literature survey of low-rank tensor approximation techniques. GAMM Mitt. 36(1), 53–78 (2013)

    Article  MathSciNet  Google Scholar 

  37. Cichocki, A.: Tensor networks for big data analytics and large-scale optimization problems. arXiv preprintarXiv:1407.3124, pp. 1–36, (2014)

  38. Oseledets, I.V.: Constructive representation of functions in low-rank tensor formats. Constr. Approx. 37(1), 1–18 (2013)

    Article  MathSciNet  Google Scholar 

  39. Bigoni, D., Engsig-karup, A.P., Marzouk, Y.M.: Spectral tensor-train decomposition. SIAM J. Sci. Comput. 38, 1–32 (2016)

    Article  MathSciNet  Google Scholar 

  40. Gorodetsky, A.: Continuous low-rank tensor decompositions, with applications to stochastic optimal control and data assimilation. PhD thesis, MIT (2016)

  41. Gorodetsky, A., Karaman, S., Marzouk, Y.: A continuous analogue of the tensor-train decomposition. Comput. Methods Appl. Mech. Eng. 347, 59–84 (2019)

    Article  MathSciNet  Google Scholar 

  42. Nouy, A.: Low-rank tensor methods for model order reduction, pp. 1–73 (2015)

  43. Falco, A., Hackbusch, W., Nouy, A.: Geometric structures in tensor representations (Final Release). pp 1–50 (2015)

  44. Azaïez, M., Belgacem, F.B., Rebollo, T.C.: Recursive POD expansion for reaction-diffusion equation. Adv. Model. Simulat. Eng. Sci. 3(1), 1–22 (2016)

    Google Scholar 

  45. Azaïez, M., Lestandi, L., Rebollo, T.C.: Low rank approximation of multidimensional data. In: Pirozzoli, S., Sengupta, T. (eds.) High-Performance Computing of Big Data for Turbulence and Combustion, vol. 592. Springer, Berlin (2019)

    Chapter  Google Scholar 

  46. Austin, W., Ballard, G., Kolda, T.G.: Parallel tensor compression for large-scale scientific data. In: Proceedings—2016 IEEE 30th International Parallel and Distributed Processing Symposium, IPDPS 2016, (2016)

  47. Philippe, B., Saad, Y.: Calcul des valeurs propres. In: Techniques de l’ingénieur. Sciences fondamentales, (AF1224) (2014)

  48. Saad, Y.: Numerical Methods for Large Eigenvalue Problems. Algorithms and Architectures for Advanced Scientific Computing. Manchester University Press, Manchester (1992)

    Google Scholar 

  49. Wu, L., Romero, E., Stathopoulos, A.: PRIMME\_SVDS: a high-performance preconditioned SVD solver for accurate large-scale computations. SIAM J. Sci. Comput. 39(5), S248–S271 (2017)

    Article  Google Scholar 

  50. Rabani, E., Toledo, S.: Out-of-core SVD and QR decompositions. In: Proceedings of the 10th SIAM Conference on Parallel Processing for Scientific Computing, Portsmouth, VA, CD-ROM, SIAM, Philadelphia, vol. 572, pp. 1–9 (2001)

  51. Demchik, V., Bačák, M., Bordag, S.: Out-of-core singular value decomposition. pp. 1–11 (2019)

  52. Dunton, A.M., Jofre, L., Iaccarino, G., Doostan, A.: Pass-efficient methods for compression of high-dimensional turbulent flow data. J. Comput. Phys. 423, 109704 (2020)

    Article  MathSciNet  Google Scholar 

  53. Kosambi, D.D.: Statistics in Function Spaces, pp. 115–123. Springer, New Delhi (1943)

    Google Scholar 

  54. Kressner, D., Tobler, C.: htucker A Matlab toolbox for tensors in hierarchical Tucker format. pp. 1–28 (2013)

  55. Chinesta, F., Ladavèze, P.: Separated representations and PGD-based model reduction. Fund. Appl. Int. Centre Mech. Sci. Courses Lect., 554, 24. (2014)

  56. Allier, P.-E., Chamoin, L., Ladevèze, P.: Proper generalized decomposition computational methods on a benchmark problem: introducing a new strategy based on Constitutive Relation Error minimization. Adv. Model. Simulat. Eng. Sci. 2(1), 17 (2015)

    Article  Google Scholar 

  57. Grasedyck, L., Hackbusch, W., Nr, B.: An introduction to hierachical (H) rank and TT rank of tensors with examples. Comput. Methods Appl. Math 11(3), 291–304 (2011)

    Article  MathSciNet  Google Scholar 

  58. Ballani, J.: Fast Evaluation of Near-Field Boundary Integrals Using Tensor Approximations. University of Leipzig, Leipzig (2012)

    MATH  Google Scholar 

  59. Ballani, J., Grasedyck, L.: Hierarchical tensor approximation of output quantities of parameter-dependent PDEs. SIAM/ASA J. Uncertain. Quantif. 3(1), 852–872 (2014)

    Article  MathSciNet  Google Scholar 

  60. Khoromskij, B.N.: O(d logN)-Quantics approximation of N-d tensors in high-dimensional numerical modeling. Constr. Approx. 34, 257–280 (2011)

    Article  MathSciNet  Google Scholar 

  61. Lestandi, L., Bhaumik, S., Sengupta, T.K., Krishna Chand Avatar, G.R., Azaïez, M.: POD applied to numerical study of unsteady flow inside lid-driven cavity. J. Math. Study 51(2), 150–176 (2018)

  62. Sengupta, T.K., Lestandi, L., Haider, S.I., Gullapalli, A., Azaïez, M.: Reduced order model of flows by time-scaling interpolation of DNS data. Adv. Model. Simulat. Eng. Sci. 5, 26 (2018)

    Article  Google Scholar 

  63. Bader, B.W., Kolda, T.G. and Others: “MATLAB Tensor Toolbox Version 3.0-dev.” Available online (2017)

  64. Lestandi, L., Bhaumik, S., Avatar, G.R.K.C., Azaiez, M., Sengupta, T.K.: Multiple Hopf bifurcations and flow dynamics inside a 2D singular lid driven cavity. Comput. Fluids 166, 86–103 (2018)

    Article  MathSciNet  Google Scholar 

  65. Lu, L.-X., Narayanaswami, S., Zhang, Y.W.: Phase field simulation of powder bed-based additive manufacturing. Acta Materialia 144, 801–809 (2018)

    Article  Google Scholar 

  66. Daulbaev, T., Gusak, J., Ponomarev, E., Cichocki, A., Oseledets, I.: Reduced-order modeling of deep neural networks (2019)

  67. Novikov, A., Izmailov, P., Khrulkov, V., Figurnov, M., Oseledets, I.: Tensor Train decomposition on TensorFlow (T3F). (2018)

  68. Iollo, A., Lanteri, S., Désidéri, J.-A.: Stability Properties of POD Galerkin approximations for the compressible Navier Stokes equations. Theoret. Comput. Fluid Dyn. 13, 377–396 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges using IHPC’s simulation platform for additive manufacturing to generate some data used in this paper. For further information on the simulation platform, readers can contact the author. The author would like to thank Pr. Mejdi Azaez for the support he provided in the writing of this paper and frequent discussions on the subject displayed here, in particular in the valorization of the numerical results. Many thanks to Diego Britez as well, who coded many of the functions in pydecomp as part of his masters’ internship at I2M. The author would like to thank former colleagues at I2M Bordeaux and in particular notus CFD dev team for providing data as well as Pr. T.K. Sengupta (IIT Kanpur) for providing high precision LDC simulation code and the many discussions we had.

Funding

Financial support was provided by Grant MOE2018-T2-1-05 in the context of the author’s research fellowship at NTU in the team of Pr. Wang Li-Lian. Financial support was provided by the Science and Engineering Research Council, A*STAR, Singapore (Grant No. A19E1a0097) in the context of the author’s new position as a Scientist at A*STAR, IHPC, Engineering Mechanics Department, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Lestandi.

Ethics declarations

Conflict of interest

The author has no relevant financial or non-financial interests to disclose.

Code Availability

The main code used for this data is publicly available under CECILL license. https://git.notus-cfd.org/llestandi/python_decomposition_library

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lestandi, L. Numerical Study of Low Rank Approximation Methods for Mechanics Data and Its Analysis. J Sci Comput 87, 14 (2021). https://doi.org/10.1007/s10915-021-01421-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01421-2

Keywords

Mathematics Subject Classification

Navigation