Skip to main content
Log in

On Exponential Bases and Frames with Non-linear Phase Functions and Some Applications

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper, we study the spectrality and frame-spectrality of exponential systems of the type \(E(\Lambda ,\varphi ) = \{e^{2\pi i \lambda \cdot \varphi (x)}: \lambda \in \Lambda \}\) where the phase function \(\varphi \) is a Borel measurable which is not necessarily linear. A complete characterization of pairs \((\Lambda ,\varphi )\) for which \(E(\Lambda ,\varphi )\) is an orthogonal basis or a frame for \(L^{2}(\mu )\) is obtained. In particular, we show that the middle-third Cantor measures and the unit disc, each admits an orthogonal basis with a certain non-linear phase. Under a natural regularity condition on the phase functions, when \(\mu \) is the Lebesgue measure on [0, 1] and \(\Lambda = {{\mathbb {Z}}},\) we show that only the standard phase functions \(\varphi (x) = \pm x\) are the only possible functions that give rise to orthonormal bases. Surprisingly, however we prove that there exist a greater degree of flexibility, even for continuously differentiable phase functions in higher dimensions. For instance, we were able to describe a large class of functions \(\varphi \) defined on \({{\mathbb {R}}}^{d}\) such that the system \(E(\Lambda ,\varphi )\) is an orthonormal basis for \(L^{2}[0,1]^{d}\) when \(d\ge 2.\) Moreover, we discuss how our results apply to the discretization problem of unitary representations of locally compact groups for the construction of orthonormal bases. Finally, we conclude the paper by stating several open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bernier, D., Taylor, K.F.: Wavelets from square-integrable representations. SIAM J. Math. Anal. 27(2), 594–608 (1996)

    Article  MathSciNet  Google Scholar 

  2. Bohnstengel, J., Kesseböhmer, M.: Wavelets for iterated function systems. J. Funct. Anal. 259(3), 583–601 (2010)

    Article  MathSciNet  Google Scholar 

  3. Christensen, O.: An Introduction to Frames and Riesz Bases, vol. 7. Springer, New York (2003)

    Book  Google Scholar 

  4. Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)

    Article  MathSciNet  Google Scholar 

  5. Dutkay, D.E., Lai, C.-K.: Uniformity of measures with fourier frames. Adv. Math. 252, 684–707 (2014)

    Article  MathSciNet  Google Scholar 

  6. Dutkay, D.E., Lai, C.-K., Wang, Y.: Fourier bases and Fourier frames on self-affine measures. In: Recent Developments in Fractals and Related Fields, Trends Math., pp. 87–111. Birkhäuser/Springer, Cham (2017)

  7. Feichtinger, H.G., Gröbner, P.: Banach spaces of distributions defined by decomposition methods. I. Math. Nachr. 123, 97–120 (1985)

    Article  MathSciNet  Google Scholar 

  8. Foschini, G.J.: Almost everywhere one-to-one functions and an \(n\)-cube decomposition. J. Math. Anal. Appl. 31, 314–317 (1970)

    Article  MathSciNet  Google Scholar 

  9. Fuglede, B.: Commuting self-adjoint partial differential operators and a group theoretic problem. J. Funct. Anal. 16, 101–121 (1974)

    Article  MathSciNet  Google Scholar 

  10. Gabardo, J.-P., Lai, C.-K., Wang, Y.: Gabor orthonormal bases generated by the unit cubes. J. Funct. Anal. 269(5), 1515–1538 (2015)

    Article  MathSciNet  Google Scholar 

  11. Gröchenig, K.: Foundations of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser Boston Inc, Boston, MA (2001)

    MATH  Google Scholar 

  12. Gröchenig, K., Rottensteiner, D.: Orthonormal bases in the orbit of square-integrable representations of nilpotent lie groups. arXiv preprint arXiv:1706.06034 (2017)

  13. He, X.-G., Lai, C.-K., Lau, K.-S.: Exponential spectra in \(l^2\) (\(\mu \)). Appl. Comput. Harmon. Anal. 34(3), 327–338 (2013)

    Article  MathSciNet  Google Scholar 

  14. Heil, C.: A Basis Theory Primer: Expanded Edition. Springer, New York (2010)

    Google Scholar 

  15. Holhoş, A.: Two area preserving maps from the square to the \(p\)-ball. Math. Model. Anal. 22(2), 157–166 (2017)

    Article  MathSciNet  Google Scholar 

  16. Jorgensen, P.E., Pedersen, S.: Dense analytic subspaces in fractall 2-spaces. Journal d’Analyse Mathematique 75(1), 185–228 (1998)

    Article  MathSciNet  Google Scholar 

  17. Kechris, A.S.: Classical Descriptive Set Theory, volume 156 of Graduate Texts in Mathematics. Springer, New York (1995)

  18. Kozma, G., Nitzan, S.: Combining Riesz bases. Invent. Math. 199(1), 267–285 (2015)

    Article  MathSciNet  Google Scholar 

  19. Kozma, G., Nitzan, S.: Combining Riesz bases in \({\mathbb{R}}^d\). Rev. Mat. Iberoam. 32(4), 1393–1406 (2016)

    Article  MathSciNet  Google Scholar 

  20. Lev, N., Matolcsi, M.: The fuglede conjecture for convex domains is true in all dimensions. arXiv:1904.12262

  21. Oussa, V.S.: Regular sampling on metabelian nilpotent lie groups: The multiplicity-free case. In: Frames and Other Bases in Abstract and Function Spaces, pp. 377–411. Springer (2017)

  22. Oussa, V.: Frames arising from irreducible solvable actions i. J. Funct. Anal. 274(4), 1202–1254 (2018)

    Article  MathSciNet  Google Scholar 

  23. Oussa, V.: Compactly supported bounded frames on Lie groups. J. Funct. Anal. 277(6), 1718–1762 (2019)

    Article  MathSciNet  Google Scholar 

  24. Strichartz, R.S.: Mock Fourier series and transforms associated with certain Cantor measures. J. Anal. Math. 81, 209–238 (2000)

    Article  MathSciNet  Google Scholar 

  25. Tao, T.: Fuglede’s conjecture is false in 5 and higher dimensions. Math. Res. Lett. 11(2–3), 251–258 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vignon Oussa.

Additional information

Communicated by Chris Heil.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabardo, JP., Lai, CK. & Oussa, V. On Exponential Bases and Frames with Non-linear Phase Functions and Some Applications. J Fourier Anal Appl 27, 9 (2021). https://doi.org/10.1007/s00041-021-09814-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-021-09814-5

Keywords

Mathematics Subject Classification

Navigation