Skip to main content

Advertisement

Log in

Dysregulation of circulating follicular helper T cells in type 2 diabetic patients with diabetic retinopathy

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Inflammation is known to be involved in the progression of diabetic retinopathy. Follicular helper T cells (Tfh) play critical roles in the differentiation of long-live plasma cells and production of antibodies, whereas circulating CD4+CXCR5+ T cells may act as a counterpart to measure Tfh cell disorders. In this study, we investigated whether Tfh could be involved in the development of diabetic retinopathy (DR) by assessing circulating Tfh cells in peripheral blood. Data showed that serum levels of total IgG and IgA were both significantly increased in type 2 diabetes mellitus (T2DM) patients with proliferative diabetic retinopathy (PDR) than with non-PDR. Also, B cell activation and differentiation were both enhanced in T2DM patients with PDR. Little changes were detected in levels of Th1, Th2, and Th17 cells. As indicated by elevated serum levels and supernatant from cultured PBMC of IL-21, we found increased circulating Tfh cells in PDR patients with dysregulated subsets. This study suggests the involvement of circulating Tfh cells in DR and, in particular, the pathogenesis of PDR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ding J, Wong TY. Current epidemiology of diabetic retinopathy and diabetic macular edema. Curr Diabetes Rep. 2012;12(4):346–54.

    Article  Google Scholar 

  2. Stitt AW, Curtis TM, Chen M, Medina RJ, McKay GJ, Jenkins A, et al. The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res. 2016;51:156–86.

    Article  PubMed  Google Scholar 

  3. Gologorsky D, Thanos A, Vavvas D. Therapeutic interventions against inflammatory and angiogenic mediators in proliferative diabetic retinopathy. Mediat Inflamm. 2012;2012:1–10.

    Article  Google Scholar 

  4. Tang J, Kern TS. Inflammation in diabetic retinopathy. Prog Retin Eye Res. 2011;30(5):343–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Yu Y, Chen H, Su SB. Neuroinflammatory responses in diabetic retinopathy. J Neuroinflammation. 2015;12:141.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yu B, Wang S. Angio-LncRs: LncRNAs that regulate angiogenesis and vascular disease. Theranostics. 2018;8(13):3654–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. El-Asrar AMA, et al. High-mobility group box-1 and biomarkers of inflammation in the vitreous from patients with proliferative diabetic retinopathy. Mol Vis. 2011;17:1829–38.

    PubMed  PubMed Central  Google Scholar 

  8. Urbancic M, et al. Epiretinal membrane inflammatory cell density might reflect the activity of proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci. 2014;55(12):8576–82.

    Article  PubMed  Google Scholar 

  9. Crotty S. Follicular helper CD4 T cells (T-FH). In: Paul WE, Littman DR, Yokoyama WM, editors. annual review of immunology, vol. 29; 2011. p. 621–63.

    Google Scholar 

  10. Fazilleau N, Eisenbraun MD, Malherbe L, Ebright JN, Pogue-Caley RR, McHeyzer-Williams LJ, et al. Lymphoid reservoirs of antigen-specific memory T helper cells. Nat Immunol. 2007;8(7):753–61.

    Article  PubMed  CAS  Google Scholar 

  11. Johnston RJ, Poholek AC, DiToro D, Yusuf I, Eto D, Barnett B, et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science. 2009;325(5943):1006–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ma CS, Suryani S, Avery DT, Chan A, Nanan R, Santner-Nanan B, et al. Early commitment of naive human CD4(+) T cells to the T follicular helper (T-FH) cell lineage is induced by IL-12. Immunol Cell Biol. 2009;87(8):590–600.

    Article  PubMed  CAS  Google Scholar 

  13. Garabatos N, Alvarez R, Carrillo J, Carrascal J, Izquierdo C, Chapman HD, et al. In vivo detection of peripherin-specific autoreactive B cells during type 1 diabetes pathogenesis. J Immunol. 2014;192(7):3080–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Vinuesa CG, Tangye SG, Moser B, Mackay CR. Follicular B helper T cells in antibody responses and autoimmunity. Nat Rev Immunol. 2005;5(11):853–65.

    Article  PubMed  CAS  Google Scholar 

  15. Vinuesa CG, Cook MC, Angelucci C, Athanasopoulos V, Rui L, Hill KM, et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature. 2005;435(7041):452–8.

    Article  PubMed  CAS  Google Scholar 

  16. Li X-y, et al. Role of the frequency of blood CD4(+) CXCR5(+) CCR6(+) T cells in autoimmunity in patients with Sjogren’s syndrome. Biochem Biophys Res Commun. 2012;422(2):238–44.

    Article  PubMed  CAS  Google Scholar 

  17. Morita R, Schmitt N, Bentebibel SE, Ranganathan R, Bourdery L, Zurawski G, et al. Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity. 2011;34(1):108–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Liu B, Hu Y, Wu Q, Zeng Y, Xiao Y, Zeng X, et al. Qualitative and quantitative analysis of B-cell-produced antibodies in vitreous humor of type 2 diabetic patients with diabetic retinopathy. J Diabetes Res. 2020;2020:1–7.

    CAS  Google Scholar 

  19. Guzman-Flores M, et al. Th17 and regulatory T cells in patients with different time of progression of type 2 diabetes mellitus. Cent Eur J Immunol. 2020;45(1):29–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Izumi K, Nishie W, Beniko M, Shimizu H. A cross-sectional study comparing the prevalence of bullous pemphigoid autoantibodies in 275 cases of type II diabetes mellitus treated with or without dipeptidyl peptidase-IV inhibitors. Front Immunol. 2019;10.

  21. Karaoglan M, Eksi F. The coincidence of newly diagnosed type 1 diabetes mellitus with IgM antibody positivity to enteroviruses an respiratory tract viruses. J Diabetes Res. 2018;2018:1–7.

    Article  Google Scholar 

  22. Paruk IM, Naidoo VG, Pirie FJ, Maharaj S, Nkwanyana NM, Dinnematin HL, et al. Prevalence and characteristics of celiac disease in South African patients with type 1 diabetes mellitus: results from the Durban Diabetes and Celiac Disease Study. J Gastroenterol Hepatol. 2019;34(4):673–8.

    Article  PubMed  CAS  Google Scholar 

  23. Wilkinson-Berka JL. Angiotensin and diabetic retinopathy. Int J Biochem Cell Biol. 2006;38(5-6):752–65.

    Article  PubMed  CAS  Google Scholar 

  24. Friedlander M. Fibrosis and diseases of the eye. J Clin Investig. 2007;117(3):576–86.

    Article  PubMed  CAS  Google Scholar 

  25. Ame-Thomas P, et al. Human mesenchymal stem cells isolated from bone marrow and lymphoid organs support tumor B-cell growth: role of stromal cells in follicular lymphoma pathogenesis. Blood. 2007;109(2):693–702.

    Article  PubMed  CAS  Google Scholar 

  26. Clear AJ, Lee AM, Calaminici M, Ramsay AG, Morris KJ, Hallam S, et al. Increased angiogenic sprouting in poor prognosis FL is associated with elevated numbers of CD163(+) macrophages within the immediate sprouting microenvironment. Blood. 2010;115(24):5053–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Cha Z, Zang Y, Guo H, Rechlic JR, Olasnova LM, Gu H, et al. Association of peripheral CD4+CXCR5+T cells with chronic lymphocytic leukemia. Tumor Biol. 2013;34(6):3579–85.

    Article  CAS  Google Scholar 

  28. Shi W, Li X, Cha Z, Sun S, Wang L, Jiao S, et al. Dysregulation of circulating follicular helper T cells in nonsmall cell lung cancer. DNA Cell Biol. 2014;33(6):355–60.

    Article  PubMed  CAS  Google Scholar 

  29. Xiao H, Luo G, Son H, Zhou Y, Zheng W. Upregulation of peripheral CD4+CXCR5+T cells in osteosarcoma. Tumor Biol. 2014;35(6):5273–9.

    Article  CAS  Google Scholar 

  30. Havenith SHC, Remmerswaal EBM, Idu MM, van Donselaar-van der Pant KAMI, van der Bom N, Bemelman FJ, et al. CXCR5CD4 follicular helper T cells accumulate in resting human lymph nodes and have superior B cell helper activity. Int Immunol. 2014;26(3):183–92.

    Article  PubMed  CAS  Google Scholar 

  31. Faghih Z, Erfani N, Haghshenas MR, Safaei A, Talei AR, Ghaderi A. Immune profiles of CD4+lymphocyte subsets in breast cancer tumor draining lymph nodes. Immunol Lett. 2014;158(1-2):57–65.

    Article  PubMed  CAS  Google Scholar 

  32. Zhao Y, Lutalo PMK, Thomas JE, Sangle S, Choong LM, Tyler JR, et al. Circulating T follicular helper cell and regulatory T cell frequencies are influenced by B cell depletion in patients with granulomatosis with polyangiitis. Rheumatology. 2014;53(4):621–30.

    Article  PubMed  CAS  Google Scholar 

  33. Liu Y, Yang Z, Lai P, Huang Z, Sun X, Zhou T, et al. Bcl-6-directed follicular helper T cells promote vascular inflammatory injury in diabetic retinopathy. Theranostics. 2020;10(9):4250–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (grant 81870663 to Honghua Yu, grant 81760175 to Ling Yuan), the Science and Technology Program of Guangzhou (grant 202002030074 to Honghua Yu), and the Medical Science Technology Program of Guangdong Province (grant B2020099 to Suihong Ma).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling Yuan, Suihong Ma or Tao Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Figure 1

Circulating Tfh cells in healthy donors, NDR, non-PDR and DR patients. a. Flow cytometry data of circulating Tfh cell (CD4+CXCR5+) in peripheral blood; b. Frequencies of circulating Tfh cells in (a). Each dot represented an individual. (PDF 172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Liu, B., Wu, G. et al. Dysregulation of circulating follicular helper T cells in type 2 diabetic patients with diabetic retinopathy. Immunol Res 69, 153–161 (2021). https://doi.org/10.1007/s12026-021-09182-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-021-09182-8

Keywords

Navigation