Skip to main content
Log in

Breakage of flawed particles by peridynamic simulations

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we use a 2D bond-based peridynamic model to investigate the strength of disk-shaped particles including pre-cracks. We use a diametral (or Brazilian) test to break the particles. For the flawless particles, we find that the stress distribution compares well with an analytical model accounting for the size of the contact zone, and the particle stiffness tends linearly to a well-defined value for increasingly resolved meshing. We then introduce cracks, which are numerically defined by reducing the Young modulus of the bonds crossing linear segments. We consider in detail the effect of a single vertical crack on the yield stress as a function of its position. We also consider a randomly distributed population of cracks with sizes generated from a Gaussian size distribution. For a parametric study with a hundred particles, we found a probability of failure that is well fit by a Weibull law. Finally, using an image analysis algorithm, we investigate the statistics of cracks and the resulting fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Song B, Rough S, Wilson D (2007) Effects of drying technique on extrusion-spheronisation granules and tablet properties. Int J Pharm 332(1–2):38

    Google Scholar 

  2. Fichtner F, Rasmuson Å, Alderborn G (2005) Particle size distribution and evolution in tablet structure during and after compaction. Int J Pharm 292(1–2):211

    Google Scholar 

  3. Affes R, Delenne JY, Monerie Y, Radjai F, Topin V (2012) Tensile strength and fracture of cemented granular aggregates. Eur Phys J E 35(11):117

    Google Scholar 

  4. Torquato S (2002) Random heterogeneous materials. Springer, Berlin

    MATH  Google Scholar 

  5. Aliha M, Ayatollahi M (2014) Rock fracture toughness study using cracked chevron notched Brazilian disc specimen under pure modes I and II loading-A statistical approach. Theor Appl Fract Mech 69:17

    Google Scholar 

  6. Guo H, Aziz N, Schmidt L (1993) Rock fracture-toughness determination by the Brazilian test. Eng Geol 33(3):177

    Google Scholar 

  7. Zhou XP, Wang YT (2016) Numerical simulation of crack propagation and coalescence in pre-cracked rock-like Brazilian disks using the non-ordinary state-based peridynamics. Int J Rock Mech Min Sci 89:235

    Google Scholar 

  8. Khanal M, Schubert W, Tomas J (2005) Experiment and simulation of breakage of particle compounds under compressive loading. Part Sci Technol 23(4):387

    Google Scholar 

  9. Xiao Y, Sun Z, Desai CS, Meng M (2019) Strength and surviving probability in grain crushing under acidic erosion and compression. Int J Geomech 19(11):04019123

    Google Scholar 

  10. Dan DQ, Konietzky H, Herbst M (2013) Brazilian tensile strength tests on some anisotropic rocks. Int J Rock Mech Min Sci 58:1

    Google Scholar 

  11. Tavallali A, Vervoort A (2013) Behaviour of layered sandstone under Brazilian test conditions: layer orientation and shape effects. J Rock Mech Geotech Eng 5:366

    Google Scholar 

  12. Zubelewicz A, Bažant ZP (1987) Interface element modeling of fracture in aggregate composites. J Eng Mech 113(11):1619

    Google Scholar 

  13. Kun F, Herrmann HJ (1996) A study of fragmentation processes using a discrete element method. Comput Methods Appl Mech Eng 138(1–4):3

    MATH  Google Scholar 

  14. Åström JA, Herrmann HJ (1998) Fragmentation of grains in a two-dimensional packing. Eur Phys J B Condens Matter Complex Syst 5(3):551

    Google Scholar 

  15. Tsoungui O, Vallet D, Charmet JC (1999) Numerical model of crushing of grains inside two-dimensional granular materials. Powder Technol 105(1–3):190

    Google Scholar 

  16. Nguyen DH, Sornay P, Azéma E, Radjai F (2015) Evolution of particle size distributions in crushable granular materials. Geomech Micro Macro 1:275

    Google Scholar 

  17. Nguyen DH, Azéma E, Sornay P, Radjai F (2015) Bonded-cell model for particle fracture. Phys Rev E 91(2):022203

    MathSciNet  Google Scholar 

  18. Orozco LF, Nguyen DH, Delenne JY, Sornay P, Radjai F (2019) Discrete-element simulations of comminution in rotating drums: effects of grinding media. Powder Technol 362:157–167

    Google Scholar 

  19. Ciantia M, de Toledo M, Alvarez Arroyo, Calvetti F, Gens Solé A (2015) An approach to enhance efficiency of DEM modelling of soils with crushable grains. Géotechnique 65(2):91

    Google Scholar 

  20. Zhou W, Yang L, Ma G, Chang X, Cheng Y, Li D (2015) Macro-micro responses of crushable granular materials in simulated true triaxial tests. Granul Matter 17(4):497

    Google Scholar 

  21. Galindo-Torres S, Pedroso D, Williams D, Li L (2012) Breaking processes in three-dimensional bonded granular materials with general shapes. Comput Phys Commun 183(2):266

    Google Scholar 

  22. Orozco LF, Delenne JY, Sornay P, Radjai F (2019) Discrete-element model for dynamic fracture of a single particle. Int J Solids Struct 166:47

    Google Scholar 

  23. Radi K, Jauffrès D, Deville S, Martin CL (2019) Elasticity and fracture of brick and mortar materials using discrete element simulations. J Mech Phys Solids 126:101

    MathSciNet  Google Scholar 

  24. Kertész J (1990) 8 - Dielectric breakdown and single crack models. In: Herrmann HJ, Roux S (eds) Statistical models for the fracture of disordered media. Random materials and processes. North-Holland, Amsterdam, pp 261–290

    Google Scholar 

  25. Topin V, Delenne JY, Radjaı F, Brendel L, Mabille F (2007) Strength and failure of cemented granular matter. Eur Phys J E 23(4):413

    Google Scholar 

  26. Nikravesh S, Gerstle W (2018) Improved state-based peridynamic lattice model including elasticity, plasticity and damage. Comput Model Eng Sci 116(3):323

    Google Scholar 

  27. Gerstle W, Sau N, Silling S (2007) Peridynamic modeling of concrete structures. Nucl Eng Des 237(12–13):1250

    Google Scholar 

  28. Celik E, Guven I, Madenci E (2011) Simulations of nanowire bend tests for extracting mechanical properties. Theor Appl Fract Mech 55(3):185

    Google Scholar 

  29. Perré P, Almeida G, Ayouz M, Frank X (2016) New modelling approaches to predict wood properties from its cellular structure: image-based representation and meshless methods. Ann For Sci 73(1):147

    Google Scholar 

  30. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175

    MathSciNet  MATH  Google Scholar 

  31. Ha YD, Bobaru F (2011) Characteristics of dynamic brittle fracture captured with peridynamics. Eng Fract Mech 78(6):1156

    Google Scholar 

  32. Love AEH (1944) A treatise on the mathematical theory of elasticity. Dover Publications, Mineola

    MATH  Google Scholar 

  33. Herrmann HJ, Roux S (1990) Statistical models for the fracture of disordered media. Elsevier, Amsterdam

    Google Scholar 

  34. Laubie H, Monfared S, Radjaï F, Pellenq R, Ulm FJ (2017) Effective potentials and elastic properties in the lattice-element method: isotropy and transverse isotropy. J Nanomech Micromech 7(3):04017007

    Google Scholar 

  35. Sarego G, Le QV, Bobaru F, Zaccariotto M, Galvanetto U (2016) Linearized state-based peridynamics for 2-D problems. Int J Numer Methods Eng 108(10):1174

    MathSciNet  Google Scholar 

  36. Zhu Q, Ni T (2017) Peridynamic formulations enriched with bond rotation effects. Int J Eng Sci 121:118

    MathSciNet  MATH  Google Scholar 

  37. Brandrup J, Immergut EH, Grulke EA, Abe A, Bloch DR (1999) Polymer handbook, vol 89. Wiley, New York

    Google Scholar 

  38. Comte C, von Stebut J (2002) Microprobe-type measurement of Young’s modulus and Poisson coefficient by means of depth sensing indentation and acoustic microscopy. Surf Coat Technol 154(1):42

    Google Scholar 

  39. Ridha S, Hamid AIA, Halim AHA, Zamzuri NA (2018) Elasticity and expansion test performance of geopolymer as oil well cement. IOP Conf Ser Earth Environ Sci 140:012147. https://doi.org/10.1088/1755-1315/140/1/012147

    Article  Google Scholar 

  40. Allen M, Tildesley D (1986) Computer simulation of liquids. Oxford University Press, Oxford

    MATH  Google Scholar 

  41. Freimanis A, Paeglitis A (2017) Mesh sensitivity in peridynamic quasi-static simulations. Procedia Eng 172:284

    Google Scholar 

  42. Yaghoobi A (2015) Meshless modeling framework for fiber reinforced concrete structures. Comput Struct 161:43

    Google Scholar 

  43. Indriyantho BR (2014) Finite element modeling of concrete fracture in tension with the Brazilian splitting test on the case of plane-stress and plane-strain. Procedia Eng 95:252

    Google Scholar 

  44. Vo TT, Mutabaruka P, Nezamabadi S, Delenne JY, Izard E, Pellenq R, Radjai F (2018) Mechanical strength of wet particle agglomerates. Mech Res Commun 92:1

    Google Scholar 

  45. Wu S, Ma J, Cheng Y, Xu M, Huang X (2018) Numerical analysis of the flattened Brazilian test: failure process, recommended geometric parameters and loading conditions. Eng Fract Mech 204:288

    Google Scholar 

  46. Nguyen DH, Azéma E, Sornay P, Radjai F (2015) Bonded-cell model for particle fracture. Phys Rev E 91:022203

    MathSciNet  Google Scholar 

  47. Wu L, Huang D, Xu Y, Wang L (2019) A non-ordinary state-based peridynamic formulation for failure of concrete subjected to impacting loads. Comput Model Eng Sci 118(3):561

    Google Scholar 

  48. Wang Y, Han F, Lubineau G (2019) A hybrid local/nonlocal continuum mechanics modeling and simulation of fracture in brittle materials. Comput Model Eng Sci 121:399–423

    Google Scholar 

  49. Raymond SJ, Jones BD, Williams JR (2019) Modeling damage and plasticity in aggregates with the material point method (MPM). Comput Part Mech 6(3):371

    Google Scholar 

  50. Bilgen C, Homberger S, Weinberg K (2019) Phase-field fracture simulations of the Brazilian splitting test. Int J Fract 220(1):85

    Google Scholar 

  51. Luding S (2008) Cohesive, frictional powders: contact models for tension. Granul Matter 10(4):235

    MathSciNet  MATH  Google Scholar 

  52. Timoshenko S, Goodier J (1969) Theory of elasticity. McGraw-Hill, New York

    MATH  Google Scholar 

  53. Lin H, Xiong W, Zhong W, Xia C (2014) Location of the crack initiation points in the Brazilian disc test. Geotech Geol Eng 32(5):1339

    Google Scholar 

  54. Laubie H, Monfared S, Radjai F, Pellenq R, Ulm FJ (2017) Disorder-induced stiffness degradation of highly disordered porous materials. J Mech Phys Solids 106:207

    MathSciNet  Google Scholar 

  55. Jianhong Y, Wu F, Sun J (2009) Estimation of the tensile elastic modulus using Brazilian disc by applying diametrically opposed concentrated loads. Int J Rock Mech Min Sci 46(3):568

    Google Scholar 

  56. Hondros G (1959) The evaluation of Poisson’s ratio and the modulus of materials of a low tensile resistance by the Brazilian (indirect tensile) test with particular reference to concrete. Aust J Appl Sci 10(3):243

    Google Scholar 

  57. Roberts AP, Garboczi EJ (2016) Elastic properties of model random three-dimensional open- cell solid. J Mech Phys Solids 50:33

    MATH  Google Scholar 

  58. Nezamabadi S, Radjai F, Averseng J, Delenne JY (2015) Implicit frictional-contact model for soft particle systems. J Mech Phys Solids 83:72

    MathSciNet  Google Scholar 

  59. Frank X, Radjaï F, Nezamabadi S, Delenne JY (2020) Tensile strength of granular aggregates: stress chains across particle phase versus stress concentration by pores. Phys Rev E 102:022906

    Google Scholar 

  60. Yu H, Li S (2020) On energy release rates in peridynamics. J Mech Phys Solids 142:104024

    MathSciNet  Google Scholar 

  61. Le QV, Bobaru F (2018) Surface corrections for peridynamic models in elasticity and fracture. Comput Mech 61(4):499

    MathSciNet  MATH  Google Scholar 

  62. Stoyan D, Gloaguen R (2011) Nucleation and growth of geological faults. Nonlinear Process Geophys 18(4):529

    Google Scholar 

  63. Haig TD, Attikiouzel Y, Alder M (1992) Border following new definition gives improved borders. IEE Proc I (Commun Speech Vis) 139(2):206

    Google Scholar 

  64. Delenne JY, Richefeu V, Radjai F (2015) Liquid clustering and capillary pressure in granular media. J Fluid Mech 762:R5

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to the INRAE MIGALE bioinformatics facility (MIGALE, INRAE, 2020. Migale bioinformatics Facility, doi: 10.15454/1.5572390655343293E12) and to the genotoul bioinformatics platform Toulouse Occitanie (Bioinfo Genotoul, doi: 10.15454/1.5572369328961167E12) for providing computing and storage resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Yves Delenne.

Ethics declarations

Conflict of interest

The authors report no conflict of interest in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We thank BPI France for their financial support.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanc, N., Frank, X., Radjai, F. et al. Breakage of flawed particles by peridynamic simulations. Comp. Part. Mech. 8, 1019–1031 (2021). https://doi.org/10.1007/s40571-021-00390-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-021-00390-5

Keywords

Navigation