Skip to main content
Log in

Existence and Continuity of Inertial Manifolds for the Hyperbolic Relaxation of the Viscous Cahn–Hilliard Equation

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We consider the hyperbolic relaxation of the viscous Cahn–Hilliard equation

$$\begin{aligned} \varepsilon \phi _{tt}+ \phi _t-\Delta (\delta \phi _t-\Delta \phi + g(\phi ))=0, \end{aligned}$$
(0.1)

in a bounded domain of \({\mathbb R}^d\) with smooth boundary when subject to Neumann boundary conditions, and on rectangular domains when subject to periodic boundary conditions. The space dimension is \(d=1,\) 2 or 3, but it is required \(\delta =\varepsilon =0\) when \(d=2\) or 3; \(\delta \) being the viscosity parameter. The constant \(\varepsilon \in (0,1]\) is a relaxation parameter, \(\phi \) is the order parameter and \(g:{\mathbb R}\rightarrow {\mathbb R}\) is a nonlinear function. This equation models the early stages of spinodal decomposition in certain glasses. Assuming that \(\varepsilon \) is dominated from above by \(\delta \) when \(d=2\) or 3, we construct a family of exponential attractors for Eq. (0.1) which converges as \((\varepsilon ,\delta )\) goes to \((0,\delta _0),\) for any \(\delta _0\in [0,1],\) with respect to a metric that depends only on \(\varepsilon \), improving previous results where this metric also depends on \(\delta \). Then we introduce two change of variables and corresponding problems, in the case of rectangular domains and \(d=1\) or 2 only. First, we set \(\tilde{\phi }(t)=\phi (\sqrt{\varepsilon } t)\) and we rewrite Eq. (0.1) in the variables \((\tilde{\phi },\tilde{\phi }_t).\) We show that there exist an integer n, independent of both \(\varepsilon \) and \(\delta \), a value \(0<\tilde{\varepsilon }_0(n)\le 1\) and an inertial manifold of dimension n, for either \(\varepsilon \in (0,\tilde{\varepsilon }_0]\) and \(\delta =2\sqrt{\varepsilon }\) or \(\varepsilon \in (0,\tilde{\varepsilon }_0]\) and \(\delta \in [0,3\varepsilon ]\). Then, we prove the existence of an inertial manifold of dimension that depends on \(\varepsilon \), but is independent of \(\delta \) and \(\eta \), for any fixed \(\varepsilon \in (0,(\eta -2)^2]\) and every \(\delta \in [\varepsilon ,(2-\eta )\sqrt{\varepsilon }]\), for an arbitrary \(\eta \in (1,2)\). Next, we show the existence of an inertial manifold of dimension that depends on \(\varepsilon \) and \(\eta \), but is independent of \(\delta \), for any fixed \(\varepsilon \in (0,\frac{1}{(2+\eta )^2}]\) and every \(\delta \in [(2+\eta )\sqrt{\varepsilon },1]\), where \(\eta >0\) is arbitrary chosen. Moreover, we show the continuity of the inertial manifolds at \(\delta =\delta _0,\) for any \(\delta _0\in [0,(2-\eta )\sqrt{\varepsilon }]\cup [(2+\eta )\sqrt{\varepsilon },1]\). Second, we set \(\phi _t=-(2\varepsilon )^{-1}(I-\delta \Delta )\phi +\varepsilon ^{-1/2}v\) and we rewrite Eq. (0.1) in the variables \((\phi ,v)\). Then, we prove the existence of an inertial manifold of dimension that depends on \(\delta \), but is independent of \(\varepsilon ,\) for any fixed \(\delta \in (0,1]\) and every \(\varepsilon \in (0,\frac{3}{16}\delta ^2]\). In addition, we prove the convergence of the inertial manifolds when \(\varepsilon \rightarrow 0^+\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonfoh, A.: Existence and continuity of uniform exponential attractors for a singular perturbation of a generalized Cahn–Hilliard equation. Asymptot. Anal. 43, 233–247 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Bonfoh, A.: The viscous Cahn–Hilliard equation with inertial term. Nonlinear Anal. 74, 946–964 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonfoh, A., Enyi, C.D.: The Cahn–Hilliard equation as limit of a conserved phase-field system. Asymptot. Anal. 101, 97–148 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Bonfoh, A., Enyi, C.D.: Large time behavior of a conserved phase-field system. Commun. Pure Appl. Anal. 15, 1077–1105 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonfoh, A., Grasselli, M., Miranville, A.: Singularly perturbed 1D Cahn–Hilliard equation revisited. Nonlinear Differ. Equ. Appl. 17, 663–695 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonfoh, A., Grasselli, M., Miranville, A.: Inertial manifolds for a singular perturbation of the viscous Cahn–Hilliard–Gurtin equation. Topol. Methods Nonlinear Anal. 35, 155–185 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Bonfoh, A., Grasselli, M., Miranville, A.: Long time behavior of a singular perturbation of the viscous Cahn–Hilliard–Gurtin equation. Math. Methods Appl. Sci. 31, 695–734 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonfoh, A., Miranville, A.: On Cahn–Hilliard–Gurtin equations. Nonlinear Anal. 47, 3455–3466 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cahn, J.W., Hilliard, J.E.: Free energy of a non-uniform System. I. Interfacial free energy. J. Chem. Phys. 2, 258–267 (1958)

    Article  MATH  Google Scholar 

  10. Cavaterra, C., Gal, C.G., Grasselli, M.: Cahn–Hilliard equations with memory and dynamic boundary conditions. Asymptot. Anal. 71, 123–162 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Chow, S.-N., Lu, K.: Invariant manifolds for flow in Banach spaces. J. Differ. Equ. 74, 285–317 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chow, S.-N., Lu, K., Sell, G.R.: Smoothness of inertial manifolds. J. Math. Anal. Appl. 169, 283–312 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chueshov, I.: Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Acta, Kharkov, 1999, in Russian; English translation: Acta, Kharkov, 2002; see also http://www.emis.de/monographs/Chueshov/

  14. Conti, M., Coti Zelati, M.: Attractors for the non-viscous Cahn–Hilliard with memory in 2D. Nonlinear Anal. 72, 1668–1682 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Debussche, A.: A singular perturbation of the Cahn–Hilliard equation. Asymptot. Anal. 4, 161–185 (1991)

    MathSciNet  MATH  Google Scholar 

  16. Eden, A., Foias, C., Nicolaenko, B., Temam, R.: Exponential Attractors for Dissipative Evolution Equations. Masson, Paris (1994)

    MATH  Google Scholar 

  17. Efendiev, M., Miranville, A., Zelik, S.: Exponential attractors for a nonlinear reaction-diffusion system in \({\mathbb{R}}^3\). C. R. Math. Acad. Sci. Paris 330, 713–718 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Elliott, C.M., Stuart, A.M.: The viscous Cahn–Hilliard equation II. Analysis. J. Differ. Equ. 128, 387–414 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Foias, C., Nicolaenko, B., Sell, G.R., Temam, R.: Inertial manifolds for the Kuramoto–Sivashinsky equation and an estimate of their lowest dimension. J. Math. Pures Appl. 67, 197–226 (1988)

    MathSciNet  MATH  Google Scholar 

  20. Foias, C., Sell, G.R., Temam, R.: Inertial manifolds for nonlinear evolutionary equations. J. Differ. Equ. 73, 309–355 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gal, C.G., Grasselli, M.: Singular limit of viscous Cahn–Hilliard equations with memory and dynamic boundary conditions. Discret. Contin. Dyn. Syst. B 18, 1581–1610 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Galenko, P.: Phase-field models with relaxation of the diffusion flux in nonequilibrium solidification of a binary system. Phys. Lett. A 287, 190–197 (2001)

    Article  Google Scholar 

  23. Galenko, P., Jou, D.: Diffuse-interface model for rapid phase transformations in nonequilibrium systems. Phys. Rev. E 71, 046125 (2005)

    Article  Google Scholar 

  24. Gatti, S., Grasselli, M., Miranville, A., Pata, V.: A construction of a robust family of exponential attractors. Proc. Am. Math. Soc. 134, 117–127 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gatti, S., Grasselli, M., Miranville, A., Pata, V.: On the hyperbolic relaxation of the one-dimensional Cahn–Hilliard equation. J. Math. Anal. Appl. 312, 230–247 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gatti, S., Grasselli, M., Miranville, A., Pata, V.: Hyperbolic relaxation of the viscous Cahn–Hilliard equation in 3-D. Math. Models Methods Appl. Sci. 15, 165–198 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Grasselli, M., Pata, V.: Asymptotic behavior of a parabolic-hyperbolic system. Commun. Pure Appl. Anal. 3, 849–881 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Grasselli, M., Schimperna, G., Segatti, A., Zelik, S.: On the 3D Cahn–Hilliard equation with inertial term. J. Evol. Equ. 9, 371–404 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Grasselli, M., Schimperna, G., Zelik, S.: On the 2D Cahn–Hilliard equation with inertial term. Comm. Partial Differ. Equ. 34, 137–170 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Grasselli, M., Schimperna, G., Zelik, S.: Trajectory and smooth attractors for Cahn–Hilliard equations with inertial term. Nonlinearity 23, 707–737 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hale, J.K.: Asymptotic Behavior of Dissipative Systems. American Mathematical Society, Providence, RI (1988)

    MATH  Google Scholar 

  32. Hale, J.K., Raugel, G.: Upper-semicontinuity of the attractor for a singularly perturbed hyperbolic equation. J. Differ. Equ. 73, 197–214 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kania, M.B.: Upper semicontinuity of global attractors for the perturbed viscous Cahn–Hilliard equations. Topol. Methods Nonlinear Anal. 32, 327–345 (2008)

    MathSciNet  MATH  Google Scholar 

  34. Miranville, A., Zelik, S.: Attractors for dissipative partial differential equations in bounded and unbounded domains, Evolutionary equations. Vol. IV, 103-200, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam (2008)

  35. Mora, X., Solà-Morales, J.: The singular limit dynamics of semilinear damped wave equations. J. Differ. Equ. 78, 262–307 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nicolaenko, B., Scheurer, B., Temam, R.: Some global dynamical properties of a class of pattern formation equations. Commun. Partial Differ. Equ. 14, 245–297 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  37. Novick-Cohen, A.: On the viscous Cahn-Hilliard equation. In: Material instabilities in continuum mechanics (Edinburgh, 1985-1986). Oxford Sci. Publ., Oxford Univ. Press, New York, pp. 329–342 (1988)

  38. Richards, I.: On the gaps between numbers which are the sum of two squares. Adv. Math. 46, 1–2 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rosa, R., Temam, R.: Inertial manifolds and normal hyperbolicity. Acta Appl. Math. 45, 1–50 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  40. Segatti, A.: On the hyperbolic relaxation of the Cahn–Hilliard equation in \(3\)-D: approximation and long time behaviour. Math. Models Methods Appl. Sci. 17, 411–437 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Scala, R., Schimperna, G.: On the viscous Cahn–Hilliard equation with singular potential and inertial term. AIMS Math. 1, 64–76 (2016)

    Article  MATH  Google Scholar 

  42. Robinson, J.C.: Infinite-Dimensional Dynamical Systems An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  43. Temam, R.: Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd edn. Springer-Verlag, Berlin, Heidelberg, New York (1997)

    Book  MATH  Google Scholar 

  44. Zheng, S., Milani, A.: Global attractors for singular perturbations of the Cahn–Hilliard equations. J. Differ. Equ. 209, 101–139 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zheng, S., Milani, A.: Exponential attractors and inertial manifolds for singular perturbations of the Cahn–Hilliard equations. Nonlinear Anal. 57, 843–877 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is very grateful to the referees for their extremely helpful and careful reading of previous versions of this manuscript. Their suggestions and remarks greatly improved the readability as well as the quality of the present paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Bonfoh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonfoh, A. Existence and Continuity of Inertial Manifolds for the Hyperbolic Relaxation of the Viscous Cahn–Hilliard Equation. Appl Math Optim 84, 3339–3416 (2021). https://doi.org/10.1007/s00245-021-09749-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-021-09749-9

Keywords

Mathematics Subject Classification

Navigation