Skip to main content
Log in

Characterization of Polyvalent Bacteriophages Targeting Multidrug-Resistant Klebsiella pneumonia with Enhanced Anti-Biofilm Activity

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Klebsiella pneumoniae causes a variety of human infections including pneumonia. Herein, 3 lytic bacteriophages specific for K. pneumoniae designated ΦKpnM-vB1, ΦKpnP-vB2 and ΦKpnM-vB3 were isolated and characterized. Transmission electron microscopy (TEM) analysis revealed that both ΦKpnM-vB1 and ΦKpnM-vB3 belong to family Myoviridae, while ΦKpnP-vB2 is a member of family Podoviridae. The one-step growth curve showed that ΦKpnM-vB1, ΦKpnP-vB2 and ΦKpnM-vB3 exhibited latent period of 10 min. The average burst sizes were 100, 150 and 120 PFU/cell, respectively. Isolated phages showed high thermal and pH stability. The genomic analysis indicated that ΦKpnM-vB1, ΦKpnP-vB2 and ΦKpnM-vB3 contain dsDNA genome with estimated sizes of 55, 40 and 50 Kbp, respectively. Isolated phages had lytic activity on K. pneumoniae and Escherichia coli strains. Isolated phages were highly efficient in reduction of Klebsiella biofilm suggesting their use to control biofilm formation caused by this pathogen. Isolated ΦKpnM-vB1, ΦKpnP-vB2 and ΦKpnM-vB3 are proposed to be suitable candidates for phage therapy applications. These phages offer an effective solution for treatment of infections caused by these drug-resistant bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Manohar, P., Tamhankar, A.J., Lundborg, C.S., and Nachimuthu, R., Front. Microbiol., 2019, vol. 10, p. 574.

    Article  Google Scholar 

  2. Podschun, R. and Ullmann, U., Clin. Microbiol. Rev., 1998, vol. 11, no. 4. pp. 589–603.

    Article  CAS  Google Scholar 

  3. Akers, K.S., Mende, K., Cheatle, K.A., Zera, W.C., Yu, X., Beckius, M.L., et al., BMC Infect. Dis., 2014, vol. 14, p. 190.

    Article  Google Scholar 

  4. Paczosa, M.K. and Mecsas, J., Microbiol. Mol. Biol. Rev., 2016, vol. 80, no. 3. pp. 629–661.

    Article  CAS  Google Scholar 

  5. Nagel, T.E., Chan, B.K., De Vos, D., El-Shibiny, A., Kang’ethe, E.K., Makumi, A., and Pirnay, J.P., Front. Microbiol., 2016, vol. 7, p. 882.

    Article  Google Scholar 

  6. Hung, C.H., Kuo, C.F., Wang, C.H., Wu, C.M., and Tsao, N., Antimicrob. Agents Chemother., 2011, vol. 55, no. 4. pp. 1358–1365.

    Article  CAS  Google Scholar 

  7. Chibani-Chennoufi, S., Bruttin, A., Dillmann, M.L., and Brussow, H., J. Bacteriol., 2004, vol. 186, no. 12. pp. 3677–3686.

    Article  CAS  Google Scholar 

  8. El-Shibiny, A., El-Sahhar, S., and Adel, M., J. Appl. Microbiol., 2017, vol. 123, no. 2. pp. 556–567.

    Article  CAS  Google Scholar 

  9. Vandenheuvel, D., Lavigne, R., and Brussow, H., Annu. Rev. Virol., 2015, vol. 2, no. 1. pp. 599–618.

    Article  CAS  Google Scholar 

  10. Principi, N., Silvestri, E., and Esposito, S., Front. Pharmacol., 2019, vol. 10, p. 513.

    Article  Google Scholar 

  11. Cao, F., Wang, X., Wang, L., Li, Z., Che, J., Wang, L., et al., Biomed. Res. Int., 2015, vol. 2015, p. 752930.

    PubMed  PubMed Central  Google Scholar 

  12. Tan, D., Zhang, Y., Cheng, M., Le, S., Gu, J., Bao, J., et al., Viruses, 2019, vol. 11, no. 11.

  13. Forbes, B.A., Sahm, D.F., Weissfeld, A.S., and Bailey, W.R. Bailey and Scott’s Diagnostic Microbiology, 12th ed., St. Louis: Elsevier Mosby, 2007.

    Google Scholar 

  14. Clifford, R.J., Milillo, M., Prestwood, J., Quintero, R., Zurawski, D.V., Kwak, Y.I., et al., PLoS One, 2012, vol. 7, no. 11. p. e48558.

    Article  CAS  Google Scholar 

  15. Bauer, A.W., Kirby, W.M., Sherris, J.C., and Turck, M., Am. J. Clin. Pathol., 1966, vol. 45, no. 4. pp. 493–496.

    Article  CAS  Google Scholar 

  16. Clinical and Laboratory Standards Institute (CLSI), 26 ed., Pennyslvania, USA: Wayne, 2016.

  17. Cabral, A.B., Melo Rde, C., Maciel, M.A., and Lopes, A.C., Rev. Soc. Bras. Med. Trop., 2012, vol. 45, no. 5. pp. 572–578.

    Article  Google Scholar 

  18. Jamalludeen, N., Johnson, R.P., Friendship, R., Kropinski, A.M., Lingohr, E.J., and Gyles, C.L., Vet. Microbiol., 2007, vol. 124, nos. 1–2. pp. 47–57.

    Article  CAS  Google Scholar 

  19. Goodridge, L., Gallaccio, A., and Griffiths, M.W., Appl. Environ. Microbiol., 2003, vol. 69, no. 9. pp. 5364–5371.

    Article  CAS  Google Scholar 

  20. Jamal, M., Hussain, T., Das, C.R., and Andleeb, S., J. Med. Microbiol., 2015, vol. 64, Pt. 4. pp. 454–462.

    Article  Google Scholar 

  21. Kwiatek, M., Mizak, L., Parasion, S., Gryko, R., Olender, A., and Niemcewicz, M., Folia Microbiol. (Praha), 2015, vol. 60, no. 1. pp. 7–14.

    Article  CAS  Google Scholar 

  22. Gill, J.J. and Hyman, P., Curr. Pharm. Biotechnol., 2010, vol. 11, no. 1. pp. 2–14.

    Article  CAS  Google Scholar 

  23. Chhibber, S., Nag, D., and Bansal, S., BMC Microbiol., 2013, vol. 13, no. pp. 174.

  24. Kesik-Szeloch, A., Drulis-Kawa, Z., Weber-Dabrowska, B., Kassner, J., Majkowska-Skrobek, G., Augustyniak, D., et al., Virol. J., 2013, vol. 10, pp. 100.

    Article  CAS  Google Scholar 

  25. Taha, O.A., Connerton, P.L., Connerton, I.F., and El-Shibiny, A., Front. Microbiol., 2018, vol. 9, p. 2127.

    Article  Google Scholar 

  26. Fernandez, L., Gutierrez, D., Garcia, P., and Rodriguez, A., Antibiotics (Basel), 2019, vol. 8, no. 3.

  27. Chaturongakul, S. and Ounjai, P., Front. Microbiol., 2014, vol. 5, p. 442.

    Article  Google Scholar 

  28. Anand, T., Virmani, N., Kumar, S., Mohanty, A.K., Pavulraj, S., Bera, B.C., et al., J. Glob. Antimicrob. Resist., 2019, vol. 21, pp. 34–41.

    Article  Google Scholar 

  29. Mah, T.F., Pitts, B., Pellock, B., Walker, G.C., Stewart, P.S., and O’Toole, G.A., Nature, 2003, vol. 426, no. 6964. pp. 306–310.

    Article  CAS  Google Scholar 

  30. Verma, V., Harjai, K., and Chhibber, S., Biofouling, 2010, vol. 26, no. 6. pp. 729–737.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Askoura.

Ethics declarations

Ethical approval: This study was approved by Ethics Committee, Zagazig University. All participants provided written informed consent prior to enrolment in the study.

Competing interests: The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askoura, M., Saed, N., Enan, G. et al. Characterization of Polyvalent Bacteriophages Targeting Multidrug-Resistant Klebsiella pneumonia with Enhanced Anti-Biofilm Activity. Appl Biochem Microbiol 57, 117–126 (2021). https://doi.org/10.1134/S000368382101004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000368382101004X

Keywords:

Navigation