Skip to main content

Advertisement

Log in

Numerical investigation of the mechanism of granular flow impact on rigid control structures

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Baffles and check-dam systems are often used as granular flow (rock avalanches, debris flows, etc.) control structures in regions prone to dangerous geological hazards leading to massive landslides. This paper explores the use of numerical modelling to simulate large volume granular flow and the effect of the presence of baffles and check dam systems on granular flow. In particular, the paper offers a solution based on the smoothed particle hydrodynamics numerical method, combined with a modified Bingham model with Mohr–Coulomb yield stress for granular flows. This method is parallelised at a large scale to perform high-resolution simulations of sand flowing down an inclined flume, obstructed by rigid control structures. We found that to maximise the flow deceleration ability of baffle arrays, the design of baffle height ought to reach a minimum critical value, which can be quantified from the flow depth without baffles (e.g. 2.7 times for frictional flows with friction angle of 27.5°). Also, the check-dam system was found to minimise run-out distances more effectively but experiences substantially higher forces compared to baffles. Finally, flow-control structures that resulted in lower run-out distances were associated with lower total energy dissipation, but faster kinetic energy dissipation in the granular flows; as well as lower downstream peak flow rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Iverson RM, Schilling SP, Vallance JW (1998) Objective delineation of lahar-inundation hazard zones. GSA Bulletin 110(8):972–984

    Article  Google Scholar 

  2. Jakob M, Weatherly H (2003) A hydroclimatic threshold for landslide initiation on the North Shore Mountains of Vancouver British Columbia. Geomorphology 54(3):137–156

    Article  Google Scholar 

  3. Rosser B et al (2017) New Zealand’s National Landslide Database. Landslides 14(6):1949–1959

    Article  Google Scholar 

  4. Choi C et al (2015) Computational investigation of baffle configuration on impedance of channelized debris flow. Can Geotech J 52(2):182–197

    Article  Google Scholar 

  5. Mizuyama T (2008) Structural countermeasures for debris flow disasters. Int J Erosion Control Eng 1(2):38–43

    Article  Google Scholar 

  6. Wendeler C et al (2008) Hazard prevention using flexible multi-level debris flow barriers. Proc of Int Symp Interpraevent 1:547–554

    Google Scholar 

  7. Choi KY, Cheung RWM (2013) Landslide disaster prevention and mitigation through works in Hong Kong. J Rock Mech Geotech Eng 5(5):354–365

    Article  Google Scholar 

  8. Cosenza E et al (2006) Concrete structures for mitigation of debris-flow hazard in the Montoro Inferiore Area, Southern Italy

  9. Ng CWW et al (2018) Dry granular flow interaction with dual-barrier systems. Géotechnique 68(5):386–399

    Article  Google Scholar 

  10. Hákonardóttir KM et al (2003) A laboratory study of the retarding effects of braking mounds on snow avalanches. J Glaciol 49(165):191–200

    Article  Google Scholar 

  11. Jóhannesson T et al (2008) The design of avalanche protection dams. Recent practical and theoretical developments

  12. Lau C, Chan E, Kwan J (2012) Natural terrain hazard mitigation measures

  13. Kwan J (2012) Supplementary technical guidance on design of rigid debris-resisting barriers. Geotechnical Engineering Office, HKSAR. GEO Report, p 270

  14. Kwan J, Koo R, Lam C (2018) Review on the design of rigid debris-resisting barriers

  15. Major JJ (1997) Depositional processes in large-scale debris-flow experiments. J Geol 105(3):345–366

    Article  Google Scholar 

  16. Naaim M et al (2010) Return period calculation and passive structure design at the Taconnaz avalanche path France. Ann Glaciol 51(54):89–97

    Article  Google Scholar 

  17. Sulsky D, Chen Z, Schreyer HL (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118(1–2):179–196

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang X et al (2013) Particle finite element analysis of large deformation and granular flow problems. Comput Geotech 54:133–142

    Article  Google Scholar 

  19. Soga K et al (2016) Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method. Géotechnique 66(3):248–273

    Article  Google Scholar 

  20. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astronom J 82:1013–1024

    Article  Google Scholar 

  21. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181(3):375–389

    Article  MATH  Google Scholar 

  22. Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Article  Google Scholar 

  23. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406

    Article  MATH  Google Scholar 

  24. Libersky LD, Petschek AG (1991) Smooth particle hydrodynamics with strength of materials. Springer, Berlin

    Book  Google Scholar 

  25. Bui HH et al (2008) Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model. Int J Numer Anal Meth Geomech 32(12):1537–1570

    Article  MATH  Google Scholar 

  26. Pastor M et al (2009) A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Int J Numer Anal Meth Geomech 33(2):143–172

    Article  MATH  Google Scholar 

  27. Bui HH et al (2011) Slope stability analysis and discontinuous slope failure simulation by elasto-plastic smoothed particle hydrodynamics (SPH). Géotechnique 61(7):565–574

    Article  Google Scholar 

  28. Nonoyama H et al (2015) Slope stability analysis using smoothed particle hydrodynamics (SPH) method. Soils Found 55(2):458–470

    Article  Google Scholar 

  29. Bui HH, Nguyen GD (2017) A coupled fluid-solid SPH approach to modelling flow through deformable porous media. Int J Solids Struct 125:244–264

    Article  Google Scholar 

  30. Bui HH, Sako K, Fukagawa R (2007) Numerical simulation of soil–water interaction using smoothed particle hydrodynamics (SPH) method. J Terrramech 44(5):339–346

    Article  Google Scholar 

  31. Tran HT et al (2019) Modelling 3D desiccation cracking in clayey soils using a size-dependent SPH computational approach. Comput Geotech 116:103209

    Article  Google Scholar 

  32. Wang Y et al (2020) Simulation of mixed‐mode fracture using SPH particles with an embedded fracture process zone. Int J Numer Anal Methods Geomech

  33. Wang Y et al (2019) A new SPH-based continuum framework with an embedded fracture process zone for modelling rock fracture. Int J Solids Struct 159:40–57

    Article  Google Scholar 

  34. Chen W, Qiu T (2012) Numerical simulations for large deformation of granular materials using smoothed particle hydrodynamics method. Int J Geomech 12(2):127–135

    Article  Google Scholar 

  35. Favero A, Borja R (2018) Continuum hydrodynamics of dry granular flows employing multiplicative elastoplasticity. Acta Geotech

  36. Ghaïtanellis A et al (2018) A SPH elastic-viscoplastic model for granular flows and bed-load transport. Adv Water Resour 111:156–173

    Article  Google Scholar 

  37. He X et al (2018) Study of the interaction between dry granular flows and rigid barriers with an SPH model. Int J Numer Anal Meth Geomech 42(11):1217–1234

    Article  Google Scholar 

  38. Longo A et al (2019) A depth average SPH model including μ (I) rheology and crushing for rock avalanches. Int J Numer Anal Meth Geomech 43(5):833–857

    Article  Google Scholar 

  39. Neto AHF, Borja RI (2018) Continuum hydrodynamics of dry granular flows employing multiplicative elastoplasticity. Acta Geotech 13(5):1027–1040

    Article  Google Scholar 

  40. Nguyen CT et al (2017) A new SPH-based approach to simulation of granular flows using viscous damping and stress regularisation. Landslides 14(1):69–81

    Article  Google Scholar 

  41. Manzanal D et al (2016) Application of a new rheological model to rock avalanches: an SPH approach. Rock Mech Rock Eng 49(6):2353–2372

    Article  Google Scholar 

  42. Nguyen NH, Bui HH, Nguyen GD (2020) Effects of material properties on the mobility of granular flow. Granular Matter 22:59

    Article  Google Scholar 

  43. Bui H, Nguyen GD (2020) Numerical predictions of post-flow behaviour of granular materials using an improved SPH model. In: CIGOS 2019, innovation for sustainable infrastructure. Springer, Berlin, p 895–900

  44. Bui HH et al (2014) A novel computational approach for large deformation and post-failure analyses of segmental retaining wall systems. Int J Numer Anal Meth Geomech 38(13):1321–1340

    Article  Google Scholar 

  45. Bui HH et al (2008) SPH-based numerical simulations for large deformation of geomaterial considering soil-structure interaction. In: The 12th international conference of international association for computer methods and advances in geomechanics (IACMAG). 2008.

  46. Faug T (2015) Macroscopic force experienced by extended objects in granular flows over a very broad Froude-number range. Europ Phys J E 38(5):1–10

    Article  Google Scholar 

  47. Peng C et al (2019) LOQUAT: an open-source GPU-accelerated SPH solver for geotechnical modeling. Acta Geotech 14(5):1269–1287

    Article  Google Scholar 

  48. Yang E et al (2020) A scalable parallel computing SPH framework for predictions of geophysical granular flows. Comput Geotech 121:103474

    Article  Google Scholar 

  49. Valdez-Balderas D et al (2013) Towards accelerating smoothed particle hydrodynamics simulations for free-surface flows on multi-GPU clusters. J Parallel Distrib Comput 73(11):1483–1493

    Article  Google Scholar 

  50. Oger G et al (2016) On distributed memory MPI-based parallelization of SPH codes in massive HPC context. Comput Phys Commun 200:1–14

    Article  MathSciNet  Google Scholar 

  51. Ng CWW et al (2015) Physical modeling of baffles influence on landslide debris mobility. Landslides 12(1):1–18

    Article  Google Scholar 

  52. Naaim M, Faug T, Naaim-Bouvet F (2003) Dry granular flow modelling including erosion and deposition. Surv Geophys 24(5–6):569–585

    Article  Google Scholar 

  53. Kattel P et al (2018) Interaction of two-phase debris flow with obstacles. Eng Geol 242:197–217

    Article  Google Scholar 

  54. Dehnen W, Aly H (2012) Improving convergence in smoothed particle hydrodynamics simulations without pairing instability. Mon Not R Astron Soc 425(2):1068–1082

    Article  Google Scholar 

  55. Antuono M et al (2010) Free-surface flows solved by means of SPH schemes with numerical diffusive terms. Comput Phys Commun 181(3):532–549

    Article  MathSciNet  MATH  Google Scholar 

  56. Oger G et al (2007) An improved SPH method: Towards higher order convergence. J Comput Phys 225(2):1472–1492

    Article  MathSciNet  MATH  Google Scholar 

  57. Blanc T, Pastor M (2013) A stabilized Smoothed Particle Hydrodynamics, Taylor-Galerkin algorithm for soil dynamics problems. Int J Numer Anal Meth Geomech 37(1):1–30

    Article  Google Scholar 

  58. Moriguchi S et al (2009) Estimating the impact force generated by granular flow on a rigid obstruction. Acta Geotech 4(1):57–71

    Article  MathSciNet  Google Scholar 

  59. Moriguchi S et al (2005) Numerical simulation of flow failure of geomaterials based on fluid dynamics. Soils Found 45(2):155–165

    Article  Google Scholar 

  60. Uzuoka R (2000) Analytical study on the mechanical behavior and prediction of soil liquefaction and flow. Ph. D. Dissertation, Gifu University

  61. Lagrée P-Y, Staron L, Popinet S (2011) The granular column collapse as a continuum: validity of a two-dimensional Navier–Stokes model with a μ (I)-rheology. J Fluid Mech 686:378–408

    Article  MathSciNet  MATH  Google Scholar 

  62. Papanastasiou TC (1987) Flows of materials with yield. J Rheol 31(5):385–404

    Article  MATH  Google Scholar 

  63. Adami S, Hu XY, Adams NA (2012) A generalized wall boundary condition for smoothed particle hydrodynamics. J Comput Phys 231(21):7057–7075

    Article  MathSciNet  Google Scholar 

  64. Morris JP, Fox PJ, Zhu Y (1997) Modeling low reynolds number incompressible flows using SPH. J Comput Phys 136(1):214–226

    Article  MATH  Google Scholar 

  65. Marrone S et al (2011) Computer methods in applied mechanics and engineering. Comput Method Appl Mech Eng 200:1526–1542

    Article  MathSciNet  Google Scholar 

  66. Nomeritae N et al (2016) Explicit incompressible SPH algorithm for free-surface flow modelling: a comparison with weakly compressible schemes. Adv Water Resour 97:156–167

    Article  Google Scholar 

  67. Liu M, Shao J, Chang J (2012) On the treatment of solid boundary in smoothed particle hydrodynamics. Sci China Technol Sci 55(1):244–254

    Article  MATH  Google Scholar 

  68. Liu GR, Liu MB (2003) Smoothed Particle Hydrodynamics: A Meshfree Particle Method

  69. Cui X, Gray J (2013) Gravity-driven granular free-surface flow around a circular cylinder. J Fluid Mech 720:314–337

    Article  MATH  Google Scholar 

  70. Monaghan JJ (1992) Smoothed particle hydrodynamics. Ann Rev Astron Astrophys 30(1):543–574

    Article  Google Scholar 

  71. Monaghan JJ (2000) SPH without a tensile instability. J Comput Phys 159(2):290–311

    Article  MATH  Google Scholar 

  72. Lind SJ et al (2012) Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. J Comput Phys 231(4):1499–1523

    Article  MathSciNet  MATH  Google Scholar 

  73. Sun PN et al (2017) The δplus-SPH model: Simple procedures for a further improvement of the SPH scheme. Comput Methods Appl Mech Eng 315:25–49

    Article  MathSciNet  MATH  Google Scholar 

  74. Khayyer A, Gotoh H, Shimizu Y (2017) Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context. J Comput Phys 332:236–256

    Article  MathSciNet  MATH  Google Scholar 

  75. Xu R, Stansby P, Laurence D (2009) Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach. J Comput Phys 228(18):6703–6725

    Article  MathSciNet  MATH  Google Scholar 

  76. Colagrossi A et al (2012) Particle packing algorithm for SPH schemes. Comput Phys Commun 183(8):1641–1653

    Article  MathSciNet  MATH  Google Scholar 

  77. Terzaghi K (1943) Arching in ideal soils. Theor Soil Mech, pp 66–76

  78. Staron L, Lagrée P-Y, Popinet S (2014) Continuum simulation of the discharge of the granular silo: a validation test for the μ(I) visco-Plastic flow law. Europ Phys J E Soft Matter 37:9961

    Article  Google Scholar 

  79. Choi CE et al (2014) Flume investigation of landslide debris–resisting baffles. Can Geotech J 51(5):540–553

    Article  Google Scholar 

  80. Marrone S et al (2010) Fast free-surface detection and level-set function definition in SPH solvers. J Comput Phys 229(10):3652–3663

    Article  MATH  Google Scholar 

  81. Chambon G et al (2011) Numerical simulations of granular free-surface flows using smoothed particle hydrodynamics. J Nonnewton Fluid Mech 166(12–13):698–712

    Article  MATH  Google Scholar 

  82. Kwan J (2012) Supplementary technical guidance on design of rigid debris-resisting barriers

  83. Koo R et al (2017) Velocity attenuation of debris flows and a new momentum-based load model for rigid barriers. Landslides 14(2):617–629

    Article  Google Scholar 

  84. Van Dine D (1996) Debris flow control structures for forest engineering. Research Branch BC Min For, Victoria, BC, Working Paper, vol 8

  85. Iverson RM (1997) The physics of debris flows. Rev Geophys 35(3):245–296

    Article  Google Scholar 

Download references

Acknowledgements

Funding support from the Australian Research Council via Projects DP170103793, DP190102779, and FT200100884, and from NSERC Canada via Project RGPIN-2019–04,155, from the National Natural Science Foundation of China (5,170,091,039), as well as the Research Grants Council of Hong Kong (16,212,618; 16,209,717; 16,210,219; T22-603/15 N; AoE/E-603/18), is gratefully acknowledged. This research was undertaken with the assistance of resources and services from the National Computational Infrastructure (NCI), which is supported by the Australian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ha H. Bui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, E., Bui, H.H., Nguyen, G.D. et al. Numerical investigation of the mechanism of granular flow impact on rigid control structures. Acta Geotech. 16, 2505–2527 (2021). https://doi.org/10.1007/s11440-021-01162-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-021-01162-4

Keywords

Navigation