Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T19:08:59.730Z Has data issue: false hasContentIssue false

Of Pipes and Patches: Listening to augmented pipe organs

Published online by Cambridge University Press:  30 May 2019

Christophe d’Alessandro*
Affiliation:
Sorbonne Université, CNRS, Institut Jean Le Rond d’Alembert, F-75005Paris, France
Markus Noisternig*
Affiliation:
IRCAM, CNRS, Sorbonne Université, STMS, F-75004, Paris, France

Abstract

Pipe organs are complex timbral synthesisers in an early acousmatic setting, which have always accompanied the evolution of music and technology. The most recent development is digital augmentation: the organ sound is captured, transformed and then played back in real time. The present augmented organ project relies on three main aesthetic principles: microphony, fusion and instrumentality. Microphony means that sounds are captured inside the organ case, close to the pipes. Real-time audio effects are then applied to the internal sounds before they are played back over loudspeakers; the transformed sounds interact with the original sounds of the pipe organ. The fusion principle exploits the blending effect of the acoustic space surrounding the instrument; the room response transforms the sounds of many single-sound sources into a consistent and organ-typical soundscape at the listener’s position. The instrumentality principle restricts electroacoustic processing to organ sounds only, excluding non-organ sound sources or samples. This article proposes a taxonomy of musical effects. It discusses aesthetic questions concerning the perceptual fusion of acoustic and electronic sources. Both extended playing techniques and digital audio can create musical gestures that conjoin the heterogeneous sonic worlds of pipe organs and electronics. This results in a paradoxical listening experience of unity in the diversity: the music is at the same time electroacoustic and instrumental.

Type
Articles
Copyright
© Cambridge University Press, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Angster, J. Rucz, P. and Miklós, A. 2017. Acoustics of organ pipes and future trends in the research. Acoustics Today 13(1): 1018.Google Scholar
Bayle, F. 1993. Musique acousmatique: propositions … positions (Acousmatic Music: Propositions… Positions). Paris: Buchet/Chastel.Google Scholar
Blackburn, A. 2011. The Pipe Organ and Real-time Digital Signal Processing (DSP): An Organist’s Perspective. Unpublished doctoral thesis, Griffith University, Australia.Google Scholar
Blackburn, A. 2017. The Representation of the Electronics in a Musique-mixte Environment: Analysing Some Ontological and Semiotic Solutions for performance. Proceedings of the Electroacoustic Music Studies Network Conference, Nagoya. www.ems-network.org (accessed 21 August 2018).Google Scholar
Boulez, P. and Gerzso, A. 1988. Computers in Music. Scientific American 258(4): 4451.Google Scholar
Bregman, A. S. 1990. Auditory Scene Analysis: The Perceptual Organization of Sound. Boston: MIT Press.Google Scholar
Chion, M. 2015. Sound: An Acoulogical Treatise. Durham, NC: Duke University Press. d’Alessandro, C. 2011. Orgues, musiques et musiciens à Sainte Élisabeth, Paris: la Flûte Harmonique.Google Scholar
d’Alessandro, C. and Noisternig, M. 2012a. Orgue: intérieur/extérieur. In S. Bianchini, N. Delprat and C. Jacquemin (eds.) Simulation technologique et matérialisation artistique, Une exploration transdisciplinaire arts/sciences. Paris: L’Harmattan.Google Scholar
d’Alessando, C., Noisternig, M., Le Beux, S., Picinali, L., Katz, B., Jacquemin, C., et al. 2009. The ORA Project: Audio-visual Live Electronics and the Pipe Organ. Proceedings of International Computer Music Conference, ICMC 2009. Montréal, Canada: ICMA.Google Scholar
Danksagmüller, F. 2018. www.danksagmueller.com/ (accessed 21 August 2018).Google Scholar
Fisdom, H. 2017. The New Baroque Organ. Orgel Park Research Reports, Vol. 5 Part 1, 2nd edn. Amsterdam: VU University Press. www.orgelpark.nl/en/Wetenschap/Research%20Reports/The-New-Baroque-Organ (accessed 12 March 2019).Google Scholar
Jacquemin, C., Ajaj, R., Le Beux, S., d’Alessandro, C., Noisternig, B., Katz, B. and Planes, B. 2010. Organ Augmented Reality: Audio−Graphical Augmentation of a Classical Instrument. International Journal of Creative Interfaces and Computer Graphics (IJCICG) 1(2): 5166.Google Scholar
Kane, B. 2007. L’Objet Sonore Maintenant: Pierre Schaeffer, sound objects and the phenomenological reduction. Organised Sound 12(1): 1524.Google Scholar
Kane, B. 2014. Sound Unseen. Acousmatic Sound in Theory and Practice. New York: Oxford University Press.Google Scholar
Karplus, K. and Strong, A. 1983. Digital Synthesis of Plucked String and Drum Timbres. Computer Music Journal 7(2): 4355.Google Scholar
Katz, B. F. G. and d’Alessandro, C. 2004. Apparent Source Width and the Church Organ. Proceedings of the Joint Annual Conference of the French and German Acoustical Societies. Strasburg, France: CFA/DAGA.Google Scholar
Lippe, C. 1991. Real-time computer music at IRCAM. Contemporary Music Review 6(1): 219224.Google Scholar
McCabe, S. L. and Denham, M. J. 1997. A model of auditory streaming. The Journal of the Acoustical Society of America 101(3): 16111621.Google Scholar
Merleau-Ponty, M. 1958. The Phenomenology of Perception, trans. Colin Smith. London: Routledge & Kegan Paul. Orig. pub. in French, 1945.Google Scholar
Miranda, E. R. and Wanderley, M. 2006. New Digital Musical Instruments: Control and Interaction Beyond the Keyboard. Aspen: A-R Editions. Pollard, H. F. 1999. Tonal Portrait of a Pipe Organ. The Journal of the Acoustical Society of America 106(1): 360370.Google Scholar
Puckette, M. S. 1996. Pure Data: Another Integrated Computer Music Environment. Proceedings of the 1996 International Computer Music Conference. Hong Kong: ICMA.Google Scholar
Puckette, M. 2007. The Theory and Technique of Electronic Music. Singapore: World Scientific Publishing.Google Scholar
Risset, J.-C. 2002. Examples of the Musical Use of Digital Audio Effects. Journal of New Music Research 31(2): 9397.Google Scholar
Risset, J.-C. and Van Duyne, S. 1996. Real-Time Performance Interaction with a Computer-Controlled Acoustic Piano. Computer Music Journal 20(1): 62–71.Sanfilippo, D. and Valle, A. 2013. Feedback Systems: An Analytical Framework. Computer Music Journal 37(2): 12–27.Google Scholar
Savouret, A. 2011. Introduction à un solfège de l’audible, l’improvisation libre comme outil pratique. Lyon: Symétrie.Google Scholar
Schaeffer, P. 1966 Traité des Objets Musicaux. Paris: Seuil.Google Scholar
Smalley, D. 1997. Spectromorphology: Explaining Sound-shapes. Organised Sound 2(2): 107126.Google Scholar
Stockhausen, K. 1971a. Mikrophonie I (1965), für Tamtam, 2 Mikrophone, 2 Filter und Regler. In Texte zur Musik 3. Cologne: Verlag M. DuMont Schauberg.Google Scholar
Stockhausen, K. 1971b. Mikrophonie II (1965), für Chor, Hammondorgel und 4 Ringmodulatoren. In Texte zur Musik 3. Cologne: Verlag M. DuMont Schauberg.Google Scholar
Symbolic Sound Corporation (2018) Kyma - a hardware and software environment for creative sound design, live performance, and scientific exploration. https://kyma.symbolicsound.com/ (accessed 21 August 2018).Google Scholar
Verfaille, V. Guastavino, C. and Traube, C. 2006. An Interdisciplinary Approach to Audio Effect Classification. Proceedings of the International Conference on Digital Audio Effects (DAFx-06). Montreal, Canada.Google Scholar
Walcker-Mayer, G. 2006. Ligeti und die Moderne Orgel. www.gewalcker.de/gewalcker.de/PDF_public/Ligeti-Orgel.pdf. (accessed 25 may 2018)Google Scholar
Walcker-Mayer, G. 2015. Kleine Geschichte der modernen deutschen Orgel. www.walcker.com/walckermagazin/kleine-geschichte-der-modernen-orgel.html. (accessed 25 May 2018).Google Scholar
Zölzer, U. 2002 DAFx: Digital Audio Effects. West Sussex: John Wiley.Google Scholar

Discography

d’Alessandro, C. and Noisternig, M. 2012b. Les douze degrés du silence. Audio CD. Paris: Hortus, Hortus96-CD.Google Scholar
Supplementary material: File

D’alessandro and Noisternig supplementary material

D’alessandro and Noisternig supplementary material 1

Download D’alessandro and Noisternig supplementary material(File)
File 3 MB