Skip to main content
Log in

Effects of single lance configuration on coal combustion process in tuyere from viewpoint of coal plume

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Pulverized coal utilization in the blast furnace is decided by the particle flow and combustion behaviors in the raceway. Under a specific operating condition, these behaviors are directly related to the lance configuration in the upstream tuyere zone. Focusing on single straight lance, six types of single lance configurations were designed by assembling four parameters in different ways. These four parameters are the lance diameter, lance insertion angle, and the horizontal and vertical distances from the lance tip to the tuyere tip. With different lance configuration schemes applied, the pulverized coal combustion process in the lance–blowpipe–tuyere zone was simulated. The simulation results regarding particle diffusion and combustion behaviors were characterized by three indicators from the viewpoint of a coal plume. They are the plume diffusion angle, diffusion uniformity, and the average plume temperature at the tuyere outlet. To promote coal utilization, the values of these indicators under different configurations were analyzed, yielding two optimal configurations. The first one is to reduce the lance length immersed in the blowpipe–tuyere by 100 mm. The other is to increase the horizontal distance from the lance tip to the tuyere outlet by 50 mm, and the insertion angle to 11° with the lance tip located at the tuyere centerline. The findings can enhance the understanding of the influence mechanism of lance configuration on the coal utilization and provide guidelines for the design of new lance configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A :

Empirical constant

A i :

Area of ith cell

A p :

Particle surface area, m2

B :

Empirical constant

C 1 :

Mass diffusion-limited rate constant

C 2 :

Kinetics-limited rate pre-exponential factor

C D :

Drag coefficient

D :

Bulk vapor diffusion coefficient, m2/s

D 0 :

Oxygen diffusion rate coefficient, m2/s

d :

Diameter of lance diameter, mm

d p :

Coal particle diameter, m

E :

Activation energy, J/kmol

f :

Drag function

f Chari :

Char fraction in the coal in ith devolatilization reaction

f Coal :

Dry ash free basis of coal

f VM :

Fraction of volatile matter in coal dry ash free basis

f VMi :

Fraction of volatile matter in coal in ith devolatilization reaction

g :

Gravitaional accelaration, 9.8 m/s2

h g :

Specific enthalpy of gas phase, J/kg

H :

Height from lance tip to tuyere centerline, mm

k :

Turbulence kinetic energy, m2/s2

L :

Axial distance from lance tip to tuyere outlet, mm

L′ :

Nondimensional distance from lance tip to tuyere outlet

l :

Immersed length of lance in blowpipe zone, mm

m p :

Particle mass, kg

\(\dot{m}_{\text{pg}}\) :

Mass transfer from particle to gas phase, kg/m3

M i :

Molecular mass of species i, kg/mol

\(M_{\Re}\) :

Molecular mass of reactant \(\Re\), kg/mol

M j :

Molecular mass of species j, kg/mol

\(p_{\text{ox}}\) :

Partial pressure of oxidant species in gas surrounding combusting particle, Pa

p :

Pressure, Pa

q g :

Heat flux, W/m3

R :

Universal gas constant, 8.314 J/(mol K)

Re p :

Particle Reynolds number

R k :

Kinetic rate, s−1

R lan :

Lance radius, mm

R tuy :

Tuyere radius, mm

R i,r :

Net rate of species production, kg/(m3 s)

S g :

Mass source term of gas phase, kg/(m3 s)

S gp :

Energy source term due to reaction, W/m3

S rad :

Energy source term due to radiation, W/m3

Sh :

Sherwood number

Sc :

Schmidt number

t :

Time, s

\(T_{\infty}\) :

Temperature of continuous phase, K

T p :

Particle temperature, K

U g :

Instantaneous gas velocity, m/s

U p :

Particle velocity, m/s

U rel :

Relative velocity between particle and gas phase, m/s

\(\overline{{\varvec{U}}}_{\text{g}} \) :

Mean velocity of gas phase, m/s

\(\varvec{U^{\prime}}_{\text{g}}\) :

Fluctuation velocity of gas phase, m/s

\(v_{{i,{{r}}}}^{\prime}\) :

Stoichiometric coefficient of reactant i in rth reaction

\(v_{{\Re ,{{r}}}}^{\prime}\) :

Stoichiometric coefficient of reactant \(\Re\) in rth reaction

\(v_{{j,{{r}}}}^{''}\) :

Stoichiometric coefficient of product j in rth reaction

X :

Distance from lance tip to location of cross-section in axial direction, mm

Y P :

Mass fraction of product P in chemical reaction

\(Y_{{\Re }}\) :

Mass fraction of particular reactant \(\Re\)

Y i,s :

Vapor mass fraction on surface

\(Y_{i, \infty}\) :

Vapor mass fraction in bulk gas

∆:

Variation of lance configuration parameter

\(\alpha_{ 1} ,\alpha_{ 2}\) :

Volatile yields of coal particle

τ g :

Stress tensor

ε :

Turbulence dissipation rate, m2/s3

θ :

Lance insertion angle, (°)

β 1, β 2 :

Diffusion angles, (°)

\(\beta_{\text{cri}}^{\text{up}}\) :

Upward critical diffusion angle, (°)

\(\beta_{\text{cri}}^{\text{dw}}\) :

Downward critical diffusion angle, (°)

ϕ i :

Particle concentration at cross-section plane, kg/m3

\(\bar{\phi }\) :

Average concentration of plane, kg/m3

\(\mu_{\text{g}}\) :

Gas dynamic viscosity, Pa s

ρ g :

Density of gas phase, kg/m3

ρ p :

Density of coal particle, kg/m3

\(\zeta\) :

Normally distributed random number

η :

Ratio of maximum particle concentration to average concentration

References

  1. A. Agrawal, S.C. Kor, A.R. Choudhary, M.K. Agarwal, S. Kundu, V.R. Tripathi, Ironmak. Steelmak. 43 (2016) 744–751.

    Article  Google Scholar 

  2. C. Zou, L.Y. Wen, J.X. Zhao, R.M. Shi, J. Iron Steel Res. Int. 24 (2017) 8–17.

    Article  Google Scholar 

  3. C. Zhou, G.W. Tang, J.C. Wang, D. Fu, T. Okosun, A. Silaen, B. Wu, JOM 68 (2016) 1353–1362.

    Article  Google Scholar 

  4. Y.S. Shen, T. Shiozawa, P. Austin, A.B. Yu, Miner. Eng. 63 (2014) 91–99.

    Article  Google Scholar 

  5. D. Wu, P. Zhou, H. Yan, P. Shi, C.Q. Zhou, Powder Technol. 342 (2019) 41–53.

    Article  Google Scholar 

  6. J.G. Li, Y.N. Zeng, J.Q. Wang, Z.J. Han, J. Iron Steel Res. Int. 18 (2011) No. 4, 11–18.

    Article  Google Scholar 

  7. B. Wu, T. Roesel, C.Q. Zhou, in: Proceedings of the ASME 2009 International Mechanical Engineering Congress and Exposition, Volume 3: Combustion Science and Engineering, American Society of Mechanical Engineers, Lake Buena Vista, Florida, USA, 2009, pp. 445–451.

  8. A.K. Silaen, T. Okosun, Y. Chen, B. Wu, J. Zhao, Y. Zhao, J. D’Alessio, J.C. Capo, C.Q. Zhou, Iron Steel Technol. 13 (2016) 68–79.

    Google Scholar 

  9. A. Majeski, A. Runstedtler, J. D’Alessio, N. Macfadyen, K. Ferron, in: Ninth International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia, 2012, pp. 1–6.

  10. A. Majeski, A. Runstedtler, J. D’alessio, N. Macfadyen, ISIJ Int. 55 (2015) 1377–1383.

  11. A. Babich, D. Senk, S. Born, ISIJ Int. 54 (2014) 2704–2712.

    Article  Google Scholar 

  12. R. Murai, Y. Kashihara, A. Murao, M. Sato, ISIJ Int. 56 (2016) 770–776.

    Article  Google Scholar 

  13. G.S. Wei, R. Zhu, L.Z. Yang, K. Dong, R.Z. Liu, J. Iron Steel Res. Int. 25 (2018) 681–691.

    Article  Google Scholar 

  14. G.S. Wei, R. Zhu, Y. Wang, X.T. Wu, K. Dong, J. Iron Steel Res. Int. 26 (2019) 909–916.

    Article  Google Scholar 

  15. T. Okosun, S.J. Street, J. Zhao, B. Wu, C.Q. Zhou, Ironmak. Steelmak. 44 (2017) 513–525.

    Article  Google Scholar 

  16. C.P. Yeh, S.W. Du, C.H. Tsai, R.J. Yang, Energy 42 (2012) 233–240.

    Article  Google Scholar 

  17. Y. Zhang, H. Wu, X.Q. Liu, C.Q. Zhou, Z.G. Fu, in: Proceedings of the ASME 2012 Summer Heat Transfer Conference HT2012, ASME, Rio Grande, Puerto Rico, 2012, pp. 1–5.

  18. S.W. Du, C.P. Yeh, W.H. Chen, C.H. Tsai, J.A. Lucas, Fuel 143 (2015) 98–106.

    Article  Google Scholar 

  19. Z. Zhou, H. Huo, G. Wang, Q. Xue, X. She, J. Wang, Steel Res. Int. 88 (2017) 1600197.

    Article  Google Scholar 

  20. Z. Zhou, Y. Liu, G. Wang, X. She, Q. Xue, J. Wang, ISIJ Int. 57 (2017) 279–285.

    Article  Google Scholar 

  21. A. Murao, Y. Kashihara, K. Takahashi, N. Oyama, H. Matsuno, M. Sato, Tetsu-to-Hagane 101 (2015) 653–660.

    Article  Google Scholar 

  22. S.W. Du, W.H. Chen, Int. Commun. Heat Mass Transfer 33 (2006) 327–334.

    Article  Google Scholar 

  23. S.W. Du, W.H. Chen, J. Lucas, Energy Convers. Manage. 48 (2007) 2069–2076.

    Article  Google Scholar 

  24. Y.Z. Pan, H.B. Zuo, J.S. Wang, Q.G. Xue, G. Wang, X.F. She, J. Iron Steel Res. Int. 27 (2020) 121–131.

    Article  Google Scholar 

  25. H. Huo, Z. Zhou, J. Wang, Q. Xue, Y. Zhang, Y. Liu, in: 8th International Symposium on High-Temperature Metallurgical Processing 2017, The Minerals, Metals and Materials, San Diego, USA, 2017, pp, 549–557.

  26. P. Tan, D. Tian, Q. Fang, L. Ma, C. Zhang, G. Chen, L. Zhong, H. Zhang, Fuel 196 (2017) 314–324.

    Article  Google Scholar 

  27. R.S. Miller, K. Harstad, J. Bellan, Int. J. Multiphase Flow 24 (1998) 1025–1055.

    Article  Google Scholar 

  28. W.E. Ranz, W.R. Marshall Jr., Chem. Eng. Prog. 48 (1952) 141–146.

    Google Scholar 

  29. W.E. Ranz, W.R. Marshall Jr., Chem. Eng. Prog. 48 (1952) 173–180.

    Google Scholar 

  30. S.K. Ubhayakar, D.B. Stickler, C.W. Von Rosenberg Jr., R.E. Gannon, in: 16th Sympium (International) on Combustion, The Combustion Institute, Paris, France, 1977, pp. 427–436.

    Google Scholar 

  31. B.F. Magnussen, B.H. Hjertager, in: 16th Symposium (International) on Combustion, The Combustion Institute, Paris, France, 1977, pp. 719–729.

    Google Scholar 

  32. M.A. Field, Combust. Flame 13 (1969) 237–252.

    Article  Google Scholar 

  33. K. Annamalai, W. Ryan, Prog. Energy Combust. Sci. 19 (1993) 383–446.

    Article  Google Scholar 

  34. J.G. Mathieson, J.S. Truelove, H. Rogers, Fuel 84 (2005) 1229–1237.

    Article  Google Scholar 

  35. D. Wu, P. Zhou, C.Q. Zhou, Appl. Energy 250 (2019) 1686–1695.

    Article  Google Scholar 

  36. Y. Chen, S. Mori, W.P. Pan, Thermochim. Acta 275 (1996) 149–158.

    Article  Google Scholar 

  37. D.Z. Yang, Y. Guan, Y. Zhang, J. Li, J.G. Hu, W.Z. Li, J. Iron Steel Res. Int. 14 (2007) No. 2, 70–72.

    Article  Google Scholar 

  38. X.G. Yao, S.B. Zheng, J. Iron Steel Res. Int. 16 (2009) No. S2–2, 1221–1224.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61573383).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-ling Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Yh., Zhou, P., Dan, Jy. et al. Effects of single lance configuration on coal combustion process in tuyere from viewpoint of coal plume. J. Iron Steel Res. Int. 28, 785–798 (2021). https://doi.org/10.1007/s42243-020-00556-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00556-0

Keywords

Navigation