Skip to main content
Log in

Vapor–liquid equilibrium pressure of ethanolamine hydrochloride, and vapor–solid equilibrium pressure of methylamine, pyridine, and trimethylamine hydrochlorides by thermogravimetric method

  • Original Paper
  • Published:
Brazilian Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In this work, vapor–liquid and vapor–solid equilibrium pressure and enthalpies of amine hydrochlorides were determined using a thermogravimetric method. Ferrocene was used as the reference compound to determine the calibration constant k. Then, ammonium bromide, ammonium chloride and benzoic acid were used for testing the k-ferrocene. Experimental vapor–solid equilibrium pressure of methylamine hydrochloride obtained in this study showed good agreement with recent literature data. For the other substances investigated, ethanolamine hydrochloride, pyridine hydrochloride, and trimethylamine hydrochloride, no reliable equilibrium data is available in the open literature. Among these substances, ethanolamine hydrochloride was found to be the less volatile, followed by methylamine, trimethylamine, and pyridine hydrochloride. Regarding the equilibrium enthalpies found in this work, all salts have shown a similar value. This can be explained by the similar reaction (dissociation) that takes place for these substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ambrose D, Ewing MB, Ghiassee NB, Sanchez Ochoa’ JC (1990) The ebulliometric method of vapour-pressure measurement: vapour pressures of benzene, hexaf luorobenzene, and naphthalene. I Chem Thermodyn 22:589–605

    CAS  Google Scholar 

  • Aston JG, Ziemer CW (1946) Thermodynamic properties of the three crystalline forms of methylammonium chloride. J Am Chem Soc 68(8):1405–1413

    CAS  Google Scholar 

  • Bagdasarian A, Feather J, Hull B, Stephenson R, Strong R (2010) Crude unit corrosion and corrosion control. GE Power Water Process Technol, pp 1–14

  • Balagurov A, Kozlenko D, Savenko B, Glazkov V, Somenkov V, Hull S (1999) Neutron diffraction study of structural changes in ammonium halides under high pressure. Phys B Condens Matter 265(1–4):92–96

    CAS  Google Scholar 

  • Barontini F, Cozzani V (2007) Assessment of systematic errors in measurement of vapor pressures by thermogravimetric analysis. Thermochim Acta 460(1–2):15–21

    CAS  Google Scholar 

  • Bazyleva A, Blokhin AV, Zaitsau DH, Kabo GJ, Paulechka E, Kazakov A, Shaw JM (2017) Thermodynamics of the antiviral and antiparkinsonian drug amantadine hydrochloride: condensed state properties and decomposition. J Chem Eng Data 62(9):2666–2675

    CAS  Google Scholar 

  • Blazejowski J, Kowalewska E (1986) Thermal Properties of Amine Hydrochlorides. Part II. Thermolysis and Thermochemistry of Alkanaminium chlorides. Thermochim Acta 105:257–285

    CAS  Google Scholar 

  • Bogdani E, Daoussi R, Vessot S, Jose J, Andrieu J (2011) Implementation and validation of the thermogravimetric method for the determination of equilibrium vapour pressure values and sublimation enthalpies of frozen organic formulations used in drug freeze-drying processes. Chem Eng Res Des 89(12):2606–2612

    CAS  Google Scholar 

  • Braden KV, Fearnside P, Murphy JC (1999) Amine blend neutralizers for refinery process corrosion. US Patent 5,965,785

  • Bureau N, Jose J, Mokbel I, de Hemptinne JC (2001) Vapour pressure measurements and prediction for heavy esters. J Chem Thermodyn 33(11):1485–1498

    CAS  Google Scholar 

  • Callanan JE, Smith NO (1971) Sublimation pressures of solid solutions III. NH4Cl + NH4Br. J Chem Thermodyn 3(4):531–538

    Google Scholar 

  • Chaiken RF, Sibbett DJ, Sutherland JE, Van de Mark DK, Wheeler A (1962) Rate of sublimation of ammonium halides. J Chem Phys 37(10):2311–2318

    CAS  Google Scholar 

  • Chambers B, Yap KM, Srinivasan S, Yunovich M (2011) Corrosion in crude destillation unit overhead operations: a comprehensive review. Nace Int Corros 11360:1–11

    Google Scholar 

  • Chaudhari SK, Patil KR, Allepús J, Coronas A (1995) Measurement of the vapor pressure of 2,2,2-trifluoroethanol and tetraethylene glycol dimethyl ether by static method. Fluid Phase Equilib 108(1–2):159–165

    CAS  Google Scholar 

  • Chickos JS, Acree WE (2003) Enthalpies of vaporization of organic and organometallic compounds, 1880–2002. J Phys Chem Ref Data 32(2):519–878

    CAS  Google Scholar 

  • de Kruif CG (1982) The vapor phase dissociation of ammonium salts: ammonium halides, ammonium rhodanide, ammonium nitrate, and ammonium bicarbonate. J Chem Phys 77(12):6247–6250

    Google Scholar 

  • de Kruif C, Blok J (1982) The vapour pressure of benzoic acid. J Chem Thermodyn 14(3):201–206

    Google Scholar 

  • Emel’yanenko VN, Verevkin SP, Krol OV, Varushchenko RM, Chelovskaya NV (2007) Vapour pressures and enthalpies of vaporization of a series of the ferrocene derivatives. J Chem Thermodyn 39(4):594–601

    Google Scholar 

  • Ewing MB, Ochoa JCS (1998) An ebulliometer for measurements of vapour pressure at low temperatures: the vapour pressures and the critical state of perfluoromethylcyclopentane. J Chem Thermodyn 30:189–198

    CAS  Google Scholar 

  • Ewing MB, Sanchez Ochoa JC (2003) The vapour pressures of n-octane determined using comparative ebulliometry. Fluid Phase Equilib 210(2):277–285

    CAS  Google Scholar 

  • Ewing M, Sanchez Ochoa J (2000) The vapour pressure of cyclohexane over the whole fluid range determined using comparative ebulliometry. J Chem Thermodyn 32(9):1157–1167

    CAS  Google Scholar 

  • Fonseca JMS, Pfohl O, Dohrn R (2011) Development and test of a new Knudsen effusion apparatus for the measurement of low vapour pressures. J Chem Thermodyn 43:1942–1949

    CAS  Google Scholar 

  • Freedman A, Kebabian PL, Li Z, Robinson WA, Wormhoudt JC (2008) Apparatus for determination of vapor pressures at ambient temperatures employing a Knudsen effusion cell and quartz crystal microbalance. Meas Sci Technol 19(12):1–8

    Google Scholar 

  • Fulem M, Růžička K, Červinka C, Rocha MA, Santos LM, Berg RF (2013) Recommended vapor pressure and thermophysical data for ferrocene. J Chem Thermodyn 57:530–540

    CAS  Google Scholar 

  • Gutzeit J (2006) Crude unit corrosion guide, 2nd edn. Process Corrosion Consultants, Gulf Breeze

    Google Scholar 

  • Hazra A, Dollimore D, Alexander K (2002) Thermal analysis of the evaporation of compounds used in aromatherapy using thermogravimetry. Thermochim Acta 392–393:221–229

    Google Scholar 

  • Hikal WM, Weeks BL (2013) In situ direct measurement of vapor pressures and thermodynamic parameters of volatile organic materials in the vapor phase: Benzoic acid, ferrocene, and naphthalene. ChemPhysChem 14(9):1920–1925

    CAS  PubMed  Google Scholar 

  • Iizuka A, Shibata E, Sato M, Nakamura T (2015) Vapor pressure measurements of PbBr 2 by the Knudsen effusion method and identification of its vapor species. Thermochim Acta 622:103–106

    CAS  Google Scholar 

  • Ivanov IL, Bolyachkina MS, Mazurin MO, Tsvetkov DS, Sereda VV, Zuev AY (2017) Vapor pressure of methylammonium halides. Part I: setup verification and vapor pressure of methylammonium chloride. Thermochim Acta 658:24–30

    CAS  Google Scholar 

  • Jacobs MHG, Van Ekeren PJ, De Kruif CG (1983) The vapour pressure and enthalpy of sublimation of ferrocene. J Chem Thermodyn 15(7):619–623

    CAS  Google Scholar 

  • JCGM/WG1 (2008) Evaluation of measurement data - Guide to the expression of uncertainty in measurement. JCGM member organizations (BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML), Sévres, France, 1st edn. https://www.bipm.org/en/publications/guides/. Accessed Aug 2018

  • Jones AH (1960) Sublimation pressure data for organic compounds. J Chem Eng Data 5(2):196–200

    CAS  Google Scholar 

  • Kaplan L, Kester WL, Katz JJ (1952) Some properties of iron biscyclopentadienyl. J Am Chem Soc 74(21):5531–5532

    CAS  Google Scholar 

  • Karakaya C, Ricote S, Albin D, Sánchez-Cortezón E, Linares-Zea B, Kee RJ (2015) Thermogravimetric analysis of InCl3 sublimation at atmospheric pressure. Thermochim Acta 622:55–63

    CAS  Google Scholar 

  • Knudsen M (1909) Die Molekularströmung der Gase durch Offnungen und die Effusion. Ann Phys 333(5):999–1016. https://doi.org/10.1002/andp.19093330505

    Article  Google Scholar 

  • Lähde A, Raula J, Malm J, Kauppinen EI, Karppinen M (2009) Sublimation and vapour pressure estimation of l-leucine using thermogravimetric analysis. Thermochim Acta 482(1–2):17–20

    Google Scholar 

  • Langmuir I (1913) The vapor pressure of metallic tungsten. Phys Rev 2(5):329–342

    Google Scholar 

  • Lehrer ES, Edmondson GJ (1993) Neutralizing amines with low salt precipitation potential. US Patent 5,211,840

  • Lencka MM, Kosinski JJ, Wang P, Anderko A (2016) Thermodynamic modeling of aqueous systems containing amines and amine hydrochlorides: Application to methylamine, morpholine, and morpholine derivatives. Fluid Phase Equilib 418:160–174

    CAS  Google Scholar 

  • Loto RT (2016) Study of the corrosion behaviour of S32101 duplex and 410 martensitic stainless steel for application in oil refinery distillation systems. J Mater Res Technol 3:203–212

    Google Scholar 

  • Markowitz M, Boryta D (1962) The determination of sublimation equilibria by differential thermal analysis. J Phys Chem 66(8):1477–1479

    CAS  Google Scholar 

  • Menon D, Dollimore D, Alexander K (2002) A TG-DTA study of the sublimation of nicotinic acid. Thermochim Acta 392–393:237–241

    Google Scholar 

  • Monte MJS, Santos LMNBF, Fulem M, Fonseca JMS, Sousa CAD (2006) New static apparatus and vapor pressure of reference materials: naphthalene, benzoic acid, benzophenone, and ferrocene. J Chem Eng Data 51(2):757–766

    CAS  Google Scholar 

  • Oliveira CELD, Cremasco MA (2014) Determination of the vapor pressure of Lippia gracilis Schum essential oil by thermogravimetric analysis. Thermochim Acta 577:1–4

    Google Scholar 

  • Pelino M, Tomassetti M, Piacente V, D’Ascenzo G (1981) Vapor pressure measurements of ferrocene, mono and 1,1-di-acetyl ferrocene. Thermochim Acta 44:89–99

    CAS  Google Scholar 

  • Phang P, Dollimore D (2001) The calculation of the vapor pressures of antioxidants over a range of temperatures using thermogravimetry. Thermochim Acta 367–368:263–271

    Google Scholar 

  • Phang P, Dollimore D, Evans SJ (2002) A comparative method for developing vapor pressure curves based on evaporation data obtained from a simultaneous TG-DTA unit. Thermochim Acta 392–393:119–125

    Google Scholar 

  • Price DM (2001) Vapor pressure determination by thermogravimetry. Thermochim Acta 367:253–262

    Google Scholar 

  • Price DM (2015) A fit of the vapours. Thermochim Acta 622:44–50

    CAS  Google Scholar 

  • Price DM, Hawkins M (1998) Calorimetry of two disperse dyes using thermogravimetry. Thermochim Acta 315(1):19–24

    CAS  Google Scholar 

  • Rodebush WH, Michalek JC (1929) The vapor pressure and vapor density of intensively dried ammonium chloride. J Am Chem Soc 51(1908):748–759

    CAS  Google Scholar 

  • Rong Y, Gregson CM, Parker A (2012) Thermogravimetric measurements of liquid vapor pressure. J Chem Thermodyn 51:25–30

    CAS  Google Scholar 

  • Sabbah R, Xu-wu A, Chickos J, Leitão M, Roux M, Torres L (1999) Reference materials for calorimetry and differential thermal analysis. Thermochim Acta 331(2):93–204

    CAS  Google Scholar 

  • Sachinidis J, Hill JO (1980) A re-evaluation of the enthalpy of sublimation of some metal acetylacetonate complexes. Thermochim Acta 35:59–66

    CAS  Google Scholar 

  • Smith A, Menzies AWC (1910) Studies in vapor pressure: V. A dynamic method for measuring vapor pressures, with its application to benzene and ammonium chloride. J Am Chem Soc 32(11):1448–1459

    Google Scholar 

  • Smith A, Calvert RP (1914) The dissociation pressures of ammonium and tetramethylammonium halides and of phosphonium iodide and phosphorus pentachloride. J Am Chem Soc 36(7):1363–1382

    CAS  Google Scholar 

  • Stephenson CC (1944) The dissociation of ammonium chloride. J Chem Phys 12(7):318–319

    CAS  Google Scholar 

  • Stevenson R (1961) Phase transitions in the ammonium halides. J Chem Phys 34(5):1757–1762

    CAS  Google Scholar 

  • Stull DR (1947) Vapor pressure of pure substances—inorganic compounds. Ind Eng Chem 39(4):540–550

    CAS  Google Scholar 

  • Tatykaev B, Burkitbayev M, Uralbekov B, Urakaev F (2014) Mechanochemical synthesis of silver chloride nanoparticles by a dilution method in the system NH4Cl - AgNO3 - NH4NO3. Acta Phys Pol A 126(4):1044–1048

    CAS  Google Scholar 

  • Valenzuela DP, Dewan AK (1999) Refinery crude column overhead corrosion control, amine neutralizer electrolyte thermodynamics, thermochemical properties and phase equilibria. Fluid Phase Equilib 158–160:829–834

    Google Scholar 

  • Vecchio S (2013) Thermogravimetric method for a rapid estimation of vapor pressure and vaporization enthalpies of disubstituted benzoic acids: an attempt to correlate vapor pressures and vaporization enthalpies with structure. Struct Chem 24(6):1821–1827

    CAS  Google Scholar 

  • Verevkin SP, Sazonova AY, Emel’yanenko VN, Zaitsau DH, Varfolomeev MA, Solomonov BN, Zherikova KV (2015) Thermochemistry of halogen-substituted methylbenzenes. J Chem Eng Data 60(1):89–103

    CAS  Google Scholar 

  • Vieyra-Eusebio MT, Rojas A (2011) Vapor pressures and sublimation enthalpies of nickelocene and cobaltocene measured by thermogravimetry. J Chem Eng Data 56(12):5008–5018

    CAS  Google Scholar 

  • Wright SF, Phang P, Dollimore D, Alexander KS (2002) An overview of calibration materials used in thermal analysis—benzoic acid. Thermochim Acta 392–393:251–257

    Google Scholar 

  • Wright S, Dollimore D, Dunn J, Alexander K (2004) Determination of the vapor pressure curves of adipic acid and triethanolamine using thermogravimetric analysis. Thermochim Acta 421(1–2):25–30

    CAS  Google Scholar 

  • Zaitsau DH, Verevkin SP, Paulechka YU, Kabo GJ, Viktor MS (2003) Comprehensive study of vapor pressures and enthalpies of vaporization of cyclohexyl esters. J Chem Eng Data 48(6):1393–1400

    CAS  Google Scholar 

  • Zielenkiewicz X, Perlovich GL, Wszelaka-Rylik M (1999) The vapour pressure and the enthalpy of sublimation. Determination by inert gas flow method. J Therm Anal Calorim 57(1):225–234

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank PETROBRAS (0050.0094379.14.9) and CAPES—Brazilian Federal Agency for Support and Evaluation of Graduate Education within the Ministry of Education of Brazil, that partially supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula B. Staudt.

Ethics declarations

Conflict of interest

Authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 244 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belusso, A.C., Strack, M.L., da Silva, G.P.M. et al. Vapor–liquid equilibrium pressure of ethanolamine hydrochloride, and vapor–solid equilibrium pressure of methylamine, pyridine, and trimethylamine hydrochlorides by thermogravimetric method. Braz. J. Chem. Eng. 38, 411–420 (2021). https://doi.org/10.1007/s43153-020-00086-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43153-020-00086-y

Keywords

Navigation