Skip to main content
Log in

Normalized ground states for the critical fractional NLS equation with a perturbation

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

In this paper, we study normalized ground states for the following critical fractional NLS equation with prescribed mass:

$$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta )^{s}u=\lambda u +\mu |u|^{q-2}u+|u|^{2_{s}^{*}-2}u,&{}x\in \mathbb {R}^{N}, \\ \int _{\mathbb {R}^{N}}u^{2}dx=a^{2},\\ \end{array}\right. } \end{aligned}$$

where \((-\Delta )^{s}\) is the fractional Laplacian, \(0<s<1\), \(N>2s\), \(2<q<2_{s}^{*}=2N/(N-2s)\) is a fractional critical Sobolev exponent, \(a>0\), \(\mu \in \mathbb {R}\). By using Jeanjean’s trick in Jeanjean (Nonlinear Anal 28:1633–1659, 1997), and the standard method which can be found in Brézis and Nirenberg (Commun Pure Appl Math 36:437–477, 1983) to overcome the lack of compactness, we first prove several existence and nonexistence results for a \(L^{2}\)-subcritical (or \(L^{2}\)-critical or \(L^{2}\)-supercritical) perturbation \(\mu |u|^{q-2}u\), then we give some results about the behavior of the ground state obtained above as \(\mu \rightarrow 0^{+}\). Our results extend and improve the existing ones in several directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartsch, T., Jeanjean, L., Soave, N.: Normalized solutions for a system of coupled cubic Schrödinger equations on \(\mathbb{R}^{3}\). J. Math. Pures Appl. 106, 583–614 (2016)

    Article  MathSciNet  Google Scholar 

  2. Bartsch, T., Soave, N.: A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems. J. Funct. Anal. 272, 4304–4333 (2017)

    Article  MathSciNet  Google Scholar 

  3. Bartsch, T., Soave, N.: Multiple normalized solutions for a competing system of Schrödinger equations. Calc. Var. Partial Differ. Equ. 58, 24 (2019)

    Article  Google Scholar 

  4. Barrios, B., Colorado, E., de Pablo, A., Sánchez, U.: On some critical problems for the fractional Laplacian operator. J. Differ. Equ. 252, 6133–6162 (2012)

    Article  MathSciNet  Google Scholar 

  5. Barrios, B., Colorado, E., Servadei, R., Soria, F.: A critical fractional equation with concave-convex power nonlinearities. Ann. Inst. H. Poincare Anal. Non Lineaire 32, 875–900 (2015)

    Article  MathSciNet  Google Scholar 

  6. Bucur, C., Valdinoci, E.: Nonlocal Diffusion and Applications. Lecture Notes of the Unione Matematica Italiana, vol. 20. Springer, Cham. Unione Matematica Italiana, Bologna, 2016. xii +155 pp

  7. Bhakta, M., Mukherjee, D.: Semilinear nonlocal elliptic equations with critical and supercritical exponents. Commun. Pure Appl. Anal. 16, 1741–1766 (2017)

    Article  MathSciNet  Google Scholar 

  8. Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent. Commun. Pure Appl. Math. 36, 437–477 (1983)

    Article  MathSciNet  Google Scholar 

  9. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32, 1245–1260 (2007)

    Article  MathSciNet  Google Scholar 

  10. Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians, I: regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. H. Poincaré Anal. Non Linéaire 31, 23–53 (2014)

    Article  MathSciNet  Google Scholar 

  11. Caffarelli, L., Roquejoffre, J., Sire, Y.: Variational problems with free boundaries for the fractional Laplacian. J. Eur. Math. Soc. 12, 1151–1179 (2010)

    Article  MathSciNet  Google Scholar 

  12. Chang, X., Wang, Z.: Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity. Nonlinearity 26, 479–494 (2013)

    Article  MathSciNet  Google Scholar 

  13. Colorado, E., de Pablo, A., Sánchez, U.: Perturbations of a critical fractional equation. Pac. J. Math. 271, 65–85 (2014)

    Article  MathSciNet  Google Scholar 

  14. Cotsiolis, A., Tavoularis, N.K.: Best constants for Sobolev inequalities for higher order fractional derivatives. J. Math. Anal. Appl. 295, 225–236 (2004)

    Article  MathSciNet  Google Scholar 

  15. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  16. Devillanova, G., Carlo Marano, G.: A free fractional viscous oscillator as a forced standard damped vibration. Fract. Calc. Appl. Anal. 19, 319–356 (2016)

    Article  MathSciNet  Google Scholar 

  17. Felmer, P., Alexander, Q., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. 142, 1237–1262 (2012)

    Article  Google Scholar 

  18. Felmer, P., Quaas, A.: Fundamental solutions and Liouville type theorems for nonlinear integral operators. Adv. Math. 226, 2712–2738 (2011)

    Article  MathSciNet  Google Scholar 

  19. Fiscella, A., Valdinoci, E.: A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. 94, 156–170 (2014)

    Article  MathSciNet  Google Scholar 

  20. Frank, R.L., Lenzmann, E.: Uniqueness of non-linear ground states for fractional Laplacians in \(\mathbb{R}\). Acta Math. 210, 261–318 (2013)

    Article  MathSciNet  Google Scholar 

  21. Frank, R.L., Lenzmann, E., Silvestre, L.: Uniqueness of radial solutions for the fractional Laplacian. Commun. Pure Appl. Math. 69, 1671–1726 (2016)

    Article  MathSciNet  Google Scholar 

  22. Ghoussoub, N.: Duality and Perturbation Methods in Critical Point Theory. Cambridge Tracts in Mathematics, vol. 107. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  23. Guo, Z., Luo, S., Zou, W.: On critical systems involving fractional Laplacian. J. Math. Anal. Appl. 446, 681–706 (2017)

    Article  MathSciNet  Google Scholar 

  24. He, X., Squassina, M., Zou, W.: The Nehari manifold for fractional systems involving critical nonlinearities. Commun. Pure Appl. Anal. 15, 1285–1308 (2016)

    Article  MathSciNet  Google Scholar 

  25. He, Q., Peng, S., Peng, Y.: Existence, non-degeneracy of proportional positive solutions and least energy solutions for a fractional elliptic system. Adv. Differ. Equ. 22, 867–892 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equation. Nonlinear Anal. 28, 1633–1659 (1997)

    Article  MathSciNet  Google Scholar 

  27. Jin, T., Li, Y., Xiong, J.: On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions. J. Eur. Math. Soc. 16, 1111–1171 (2014)

    Article  MathSciNet  Google Scholar 

  28. Luo, H., Zhang, Z.: Normalized solutions to the fractional Schrödinger equations with combined nonlinearities. Calc. Var. Partial Differ. Equ. 59, 143 (2020)

    Article  Google Scholar 

  29. Molica Bisci, G., Rădulescu, V., Servadei, R.: Variational Methods for Nonlocal Fractional Equations, Encyclopedia of Mathematics and its Applications, vol. 162. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  30. Servadei, R., Valdinoci, E.: The Brézis–Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 367, 67–102 (2015)

    Article  Google Scholar 

  31. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities. J. Differ. Equ. 269, 6941–6987 (2020)

    Article  MathSciNet  Google Scholar 

  32. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case. J. Funct. Anal. 279, 108610 (2020)

    Article  MathSciNet  Google Scholar 

  33. Secchi, S.: On fractional Schrödinger equations in \(\mathbb{R}^{N}\) without the Ambrosetti–Rabinowitz condition. Topol. Methods Nonlinear Anal. 47, 19–41 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60, 67–112 (2007)

    Article  MathSciNet  Google Scholar 

  35. Valdinoci, E.: From the long jump random walk to the fractional Laplacian. Bol. Soc. Esp. Mat. Apl. SeMA 49, 33–44 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Xiang, M., Zhang, B., Rădulescu, V.: Superlinear Schrödinger–Kirchhoff type problems involving the fractional \(p\)-Laplacian and critical exponent. Adv. Nonlinear Anal. 9, 690–709 (2020)

    Article  MathSciNet  Google Scholar 

  37. Zhen, M., Zhang, B.: Complete classification of ground state solutions with different Morse index for critical fractional Laplacian system. Math. Methods Appl. Sci. (2021). https://doi.org/10.1002/mma.6862

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhen, M., Zhang, B.: A different approach to ground state solutions for \(p\)-Laplacian system with critical exponent. Appl. Math. Lett. 111, 106593 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

B. Zhang was supported by the National Natural Science Foundation of China (No. 11871199), the Heilongjiang Province Postdoctoral Startup Foundation, PR China (LBH-Q18109), and the Cultivation Project of Young and Innovative Talents in Universities of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binlin Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhen, M., Zhang, B. Normalized ground states for the critical fractional NLS equation with a perturbation. Rev Mat Complut 35, 89–132 (2022). https://doi.org/10.1007/s13163-021-00388-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-021-00388-w

Keywords

Mathematics Subject Classification

Navigation