Skip to main content
Log in

Mathematical modeling and mechanisms of pattern formation in ecological systems: a review

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

How populations distribute in both space and time is one of the key issues in ecological systems, which can characterize the relationship between populations, space–time structure and evolution law. Consequently, pattern dynamics in ecosystems has been widely investigated including their causes and ecological functions. In order to systematically understand the interactions in ecosystems, we summarize the related results in pattern formation of ecological systems. Based on mathematical modeling and analysis, we show the mechanisms of different patterns including feedback, scale-dependent, phase separation, nonlocal effects, time delay and spatial heterogeneity. This work offers assistance for better understanding the complexity of ecosystems and provides new insights for self-organizations evolution and ecosystem protection. We hope that our results may be applied in other related fields such as epidemiology, medical science, atmospheric science and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. van de Koppel, J., Rietkerk, M., Dankers, N., et al.: Scale-dependent feedback and regular spatial patterns in young mussel beds. Am. Nat. 165, E66–E77 (2005)

    Article  Google Scholar 

  2. Binney, H., Edwards, M., Macias-Fauria, M., et al.: Vegetation of Eurasia from the last glacial maximum to present: Key biogeographic patterns. Quat. Sci. Rev. 157, 80–97 (2017)

    Article  Google Scholar 

  3. Kondo, S., Miura, T.: Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329, 1616–1620 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alon, U.: An Introduction to Systems Biology. Chapman & Hall/CRC, Boca Raton, FL (2006)

    Book  MATH  Google Scholar 

  5. Murray, J.D.: Mathematical Biology II: Spatial Models and Biomedical Applications. Springer, New York (2003)

    Book  MATH  Google Scholar 

  6. Fuentes, M., Kuperman, M., Kenkre, V.: Nonlocal interaction effects on pattern formation in population dynamics. Phys. Rev. Lett. 91, 158104 (2003)

    Article  Google Scholar 

  7. Kenkre, V.M., Lindenberg, K.: Modern challenges in statistical mechanics: patterns, noise, and the interplay of nonlinearity and complexity. In: Modern Challenges in Statistical Mechanics: Patterns, Noise, and the Interplay of Nonlinearity and Complexity (2003)

  8. Fuentes, M.A., Kuperman, M.N., Kenkre, V.M.: Analytical considerations in the study of spatial patterns arising from nonlocal interaction effects. J. Phys. Chem. B 108, 10505–10508 (2004)

    Article  Google Scholar 

  9. Liu, Q.-X., Doelman, A., Rottschäfer, V., et al.: Phase separation explains a new class of self-organized spatial patterns in ecological systems. Proc. Natl. Acad. Sci. 110, 11905–11910 (2013)

    Article  MathSciNet  Google Scholar 

  10. Klausmeier, C.A.: Regular and irregular patterns in semiarid vegetation. Science 284, 1826–1828 (1999)

    Article  Google Scholar 

  11. Ni, W., Shi, J., Wang, M.: Global stability and pattern formation in a nonlocal diffusive Lotka-Volterra competition model. J. Differ. Equ. 264, 6891–6932 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Tian, C., Ling, Z., Zhang, L.: Nonlocal interaction driven pattern formation in a prey-predator model. Appl. Math. Comput. 308, 73–83 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  14. Koch, A., Meinhardt, H.: Biological pattern formation: from basic mechanisms to complex structures. Rev. Mod. Phys. 66, 1481 (1994)

    Article  Google Scholar 

  15. Jacob, F., Monod, J.: Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318–356 (1961)

    Article  Google Scholar 

  16. Holling, C.S.: Resilience and stability of ecological systems. Ann. Rev. Ecol. Syst. 4, 1–23 (1973)

    Article  Google Scholar 

  17. Meron, E.: Modeling dryland landscapes. Math. Model. Nat. Phenom. 6, 163–187 (2011)

    Article  MathSciNet  Google Scholar 

  18. Sun, G.-Q., Wang, C.-H., Chang, L.-L., et al.: Effects of feedback regulation on vegetation patterns in semi-arid environments. Appl. Math. Model. 61, 200–215 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. von Hardenberg, J., Meron, E., Shachak, M., et al.: Diversity of vegetation patterns and desertification. Phys. Rev. Lett. 87, 198101 (2001)

    Article  Google Scholar 

  20. Wedin, D., Tilman, D.: Competition among grasses along a nitrogen gradient: initial conditions and mechanisms of competition. Ecol. Monogr. 63, 199–229 (1993)

    Article  Google Scholar 

  21. Garbeva, P., van Veen, J.A., van Elsas, J.D.: Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 42, 243–270 (2004)

    Article  Google Scholar 

  22. James, S.E., Partel, M., Wilson, S.D., et al.: Temporal heterogeneity of soil moisture in grassland and forest. J. Ecol. 91, 234–239 (2003)

    Article  Google Scholar 

  23. Mangan, S.A., Schnitzer, S.A., Herre, E.A., et al.: Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466, 752–755 (2010)

    Article  Google Scholar 

  24. van der Putten, W.H., Bardgett, R.D., Bever, J.D., et al.: Plant-soil feedbacks: the past, the present and future challenges. J. Ecol. 101, 265–276 (2013)

    Article  Google Scholar 

  25. Kardol, P., Cornips, N.J., van Kempen, M.M.L., et al.: Microbe-mediated plant-soil feedback causes historical contingency effects in plant community assembly. Ecol. Monogr. 77, 147–162 (2007)

    Article  Google Scholar 

  26. Cortois, R., Schroder-Georgi, T., Weigelt, A., et al.: Plant-soil feedbacks: role of plant functional group and plant traits. J. Ecol. 104, 1608–1617 (2016)

    Article  Google Scholar 

  27. Vincenot, C.E., Giannino, F., Rietkerk, M., et al.: Theoretical considerations on the combined use of System Dynamics and individual-based modeling in ecology. Ecol. Model. 222, 210–218 (2011)

    Article  Google Scholar 

  28. Weibull, W.: A statistical distribution function of wide applicability. J. Appl. Mech. 18, 293–297 (1951)

    Article  MATH  Google Scholar 

  29. Vincenot, C.E., Carteni, F., Bonanomi, G., et al.: Plant-soil negative feedback explains vegetation dynamics and patterns at multiple scales. Oikos 126, 1319–1328 (2017)

    Article  Google Scholar 

  30. Rietkerk, M., Van de Koppel, J.: Regular pattern formation in real ecosystems. Trends Ecol. Evol. 23, 169–175 (2008)

    Article  Google Scholar 

  31. Bertness, M.D., Grosholz, E.: Population dynamics of the ribbed mussel, Geukensia demissa: the costs and benefits of an aggregated distribution. Oecologia 67, 192–204 (1985)

    Article  Google Scholar 

  32. Côté, I.M., Jelnikar, E.: Predator-induced clumping behaviour in mussels (Mytilusedulis Linnaeus). J. Exp. Mar. Biol. Ecol. 235, 201–211 (1999)

    Article  Google Scholar 

  33. Sun, G.-Q., Wang, C.-H., Wu, Z.-Y.: Pattern dynamics of a Gierer-Meinhardt model with spatial effects. Nonlinear Dyn. 88, 1385–1396 (2017)

    Article  Google Scholar 

  34. Hunt, H.L., Scheibling, R.E.: Patch dynamics of mussels on rocky shores: Integrating process to understand pattern. Ecology 82, 3213–3231 (2001)

    Article  Google Scholar 

  35. Hunt, H.L., Scheibling, R.E.: Movement and wave dislodgment of mussels on a wave-exposed rocky shore. Veliger 45, 273–277 (2002)

    Google Scholar 

  36. Sun, G.-Q.: Mathematical modeling of population dynamics with Allee effect. Nonlinear Dyn. 85, 1–12 (2016)

    Article  MathSciNet  Google Scholar 

  37. Okamura, B.: Group living and the effects of spatial position in aggregations of Mytilus edulis. Oecologia 69, 341–347 (1986)

    Article  Google Scholar 

  38. Rietkerk, M., Boerlijst, M.C., van Langevelde, F., et al.: Self-organization of vegetation in arid ecosystems. Am. Nat. 160, 524–530 (2002)

    Article  Google Scholar 

  39. Couteron, P., Lejeune, O.: Periodic spotted patterns in semi-arid vegetation explained by a propagation-inhibition model. J. Ecol. 89, 616–628 (2001)

    Article  Google Scholar 

  40. Lejeune, O., Tlidi, M., Couteron, P.: Localized vegetation patches: A self-organized response to resource scarcity. Phys. Rev. E 66, 010901 (2002)

    Article  Google Scholar 

  41. Liu, Q.-X., Weerman, E.J., Herman, P.M.J., et al.: Alternative mechanisms alter the emergent properties of self-organization in mussel beds. Proc. R. Soc. B 279, 2744–2753 (2012)

    Article  Google Scholar 

  42. van Leeuwen, B., Augustijn, D.C., Van Wesenbeeck, B., et al.: Modeling the influence of a young mussel bed on fine sediment dynamics on an intertidal flat in the Wadden Sea. Ecol. Eng. 36, 145–153 (2010)

    Article  Google Scholar 

  43. Widdows, J., Lucas, J.S., Brinsley, M.D., et al.: Investigation of the effects of current velocity on mussel feeding and mussel bed stability using an annular flume. Helgol. Mar. Res. 56, 3–12 (2002)

    Article  Google Scholar 

  44. Anderson, M.J.: Animal-sediment relationships re-visited: Characterising species’ distributions along an environmental gradient using canonical analysis and quantile regression splines. J. Exp. Mar. Biol. Ecol. 366, 16–27 (2008)

    Article  Google Scholar 

  45. Humphries, S.: Filter feeders and plankton increase particle encounter rates through flow regime control. Proc. Natl. Acad. Sci. 106, 7882–7887 (2009)

    Article  Google Scholar 

  46. Schulte, D.M., Burke, R.P., Lipcius, R.N.: Unprecedented restoration of a native oyster metapopulation. Science 325, 1124–1128 (2009)

    Article  Google Scholar 

  47. de Jager, M., Weissing, F.J., Herman, P.M.J., et al.: Levy walks evolve through interaction between movement and environmental complexity. Science 332, 1551–1553 (2011)

    Article  Google Scholar 

  48. van de Koppel, J., Gascoigne, J.C., Theraulaz, G., et al.: Experimental Evidence for Spatial Self-organization and its emergent effects in mussel bed ecosystems. Science 322, 739–742 (2008)

    Article  Google Scholar 

  49. Wang, R.H., Liu, Q.-X., Sun, G.-Q., et al.: Nonlinear dynamic and pattern bifurcations in a model for spatial patterns in young mussel beds. J. R. Soc. Interface 6, 705–718 (2009)

    Article  Google Scholar 

  50. Sabrina, S., Spellings, M., Glotzer, S.C., et al.: Coarsening dynamics of binary liquids with active rotation. Soft Matter 11, 8409–8416 (2015)

    Article  Google Scholar 

  51. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  MATH  Google Scholar 

  52. Theraulaz, G., Bonabeau, E., Nicolis, S.C., et al.: Spatial patterns in ant colonies. Proc. Natl. Acad. Sci. 99, 9645–9649 (2002)

    Article  MATH  Google Scholar 

  53. Cates, M.E., Marenduzzo, D., Pagonabarraga, I., et al.: Arrested phase separation in reproducing bacteria creates a generic route to pattern formation. Proc. Natl. Acad. Sci. 107, 11715–11720 (2010)

    Article  Google Scholar 

  54. Fu, X., Tang, L.-H., Liu, C., et al.: Stripe formation in bacterial systems with density-suppressed motility. Phys. Rev. Lett. 108, 1981–1988 (2012)

    Article  Google Scholar 

  55. Liu, Q.-X., Rietkerk, M., Herman, P.M.J., et al.: Phase separation driven by density-dependent movement: A novel mechanism for ecological patterns. Phys. Life Rev. 19, 107–121 (2016)

    Article  Google Scholar 

  56. Stenhammar, J., Tiribocchi, A., Allen, R.J., et al.: Continuum theory of phase separation kinetics for active brownian particles. Phys. Rev. Lett. 111, 145702 (2013)

    Article  Google Scholar 

  57. Brenner, M.P.: Chemotactic patterns without chemotaxis. Proc. Natl. Acad. Sci. 107, 11653–11654 (2010)

    Article  Google Scholar 

  58. Turchin, P.: Population consequences of aggregative movement. J. Anim. Ecol. 58, 75–100 (1989)

    Article  Google Scholar 

  59. Ims, R.A., Andreassen, H.P.: Density-dependent dispersal and spatial population dynamics. Proc. R. Soc. B 272, 913–918 (2005)

    Article  Google Scholar 

  60. Barbier, N., Couteron, P., Lefever, R., et al.: Spatial decoupling of facilitation and competition at the origin of gapped vegetation patterns. Ecology 89, 1521–1531 (2008)

    Article  Google Scholar 

  61. D’Odorico, P., Laio, F., Ridolfi, L.: Patterns as indicators of productivity enhancement by facilitation and competition in dryland vegetation. J. Geophys. Res. 111, G03010 (2006)

    Google Scholar 

  62. Guo, Z.-G., Sun, G.-Q., Wang, Z., et al.: Spatial dynamics of an epidemic model with nonlocal infection. Appl. Math. Comput. 377, 125158 (2020)

    MathSciNet  MATH  Google Scholar 

  63. Pueyo, Y., Kéfi, S., Alados, C., et al.: Dispersal strategies and spatial organization of vegetation in arid ecosystems. Oikos 117, 1522–1532 (2008)

    Article  Google Scholar 

  64. Borgogno, F., D’Odorico, P., Laio, F., et al.: Mathematical models of vegetation pattern formation in ecohydrology. Rev. Geophys. 47, RG1005 (2009)

    Article  Google Scholar 

  65. Martínez-García, R., Calabrese, J.M., Hernández-García, E., et al.: Minimal mechanisms for vegetation patterns in semiarid regions. Philos. Trans. R. Soc. A 372, 20140068 (2014)

    Article  Google Scholar 

  66. Kletter, A., Von Hardenberg, J., Meron, E., Provenzale, A.: Patterned vegetation and rainfall intermittency. J. Theor. Biol. 256, 574–583 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  67. van de Koppel, J., Rietkerk, M., van Langevelde, F., et al.: Spatial heterogeneity and irreversible vegetation change in semiarid grazing systems. Am. Nat. 159, 209–218 (2002)

    Article  Google Scholar 

  68. Gilad, E., von Hardenberg, J., Provenzale, A., et al.: A mathematical model of plants as ecosystem engineers. J. Theor. Biol. 244, 680–691 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  69. HilleRisLambers, R., Rietkerk, M., van den Bosch, F., et al.: Vegetation pattern formation in semi-arid grazing systems. Ecology 82, 50–61 (2001)

    Article  Google Scholar 

  70. Kao, C.-Y., Lou, Y., Shen, W.: Random dispersal versus nonlocal dispersal. Discret. Contin. Dyn. Syst. 26, 551–596 (2010)

    Article  MATH  Google Scholar 

  71. Allen, E.J., Allen, L.J., Gilliam, X.: Dispersal and competition models for plants. J. Math. Biol. 34, 455–481 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  72. Powell, J.A., Zimmermann, N.E.: Multiscale analysis of active seed dispersal contributes to resolving Reid’s paradox. Ecology 85, 490–506 (2004)

    Article  Google Scholar 

  73. Eigentler, L., Sherratt, J.A.: Analysis of a model for banded vegetation patterns in semi-arid environments with nonlocal dispersal. J. Math. Biol. 77, 739–763 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  74. Baudena, M., Rietkerk, M.: Complexity and coexistence in a simple spatial model for arid savanna ecosystems. Theor. Ecol. 6, 131–141 (2013)

    Article  Google Scholar 

  75. Pueyo, Y., Kéfi, S., Díaz-Sierra, R., et al.: The role of reproductive plant traits and biotic interactions in the dynamics of semi-arid plant communities. Theor. Popul. Biol. 78, 289–297 (2010)

    Article  MATH  Google Scholar 

  76. Thompson, S., Katul, G., Terborgh, J., et al.: Spatial organization of vegetation arising from non-local excitation with local inhibition in tropical rainforests. Phys. D 238, 1061–1067 (2009)

    Article  MATH  Google Scholar 

  77. Alfaro, M., Izuhara, H., Mimura, M.: On a nonlocal system for vegetation in drylands. J. Math. Biol. 77, 1761–1793 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  78. Sen, S., Ghosh, P., Riaz, S.S., et al.: Time-delay-induced instabilities in reaction-diffusion systems. Phys. Rev. E 80, 046212 (2009)

    Article  Google Scholar 

  79. Yao, Z., Ma, J., Yao, Y., et al.: Synchronization realization between two nonlinear circuits via an induction coil coupling. Nonlinear Dyn. 96, 205–217 (2019)

    Article  MATH  Google Scholar 

  80. Shu, H., Wang, L., Wu, J.: Global dynamics of Nicholson’s blowflies equation revisited: Onset and termination of nonlinear oscillations. J. Differ. Equ. 255, 2565–2586 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  81. Ma, J., Zhang, G., Hayat, T.: Model electrical activity of neuron under electric field. Nonlinear Dyn. 95, 1585–1598 (2019)

    Article  Google Scholar 

  82. Lian, X., Wang, H., Wang, W.: Delay-driven pattern formation in a reaction-diffusion predator-prey model incorporating a prey refuge. J. Stat. Mech. 2013, P04006 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  83. Wang, C., Ma, J.: A review and guidance for pattern selection in spatiotemporal system. Int. J. Mod. Phys. B 32, 1830003 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  84. Yuan, Y., Bélair, J.: Threshold dynamics in an SEIRS model with latency and temporary immunity. J. Math. Biol. 69, 875–904 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  85. Xu, Y., Jia, Y., Ma, J., et al.: Collective responses in electrical activities of neurons under field coupling. Sci. Rep. 8, 1349 (2018)

    Article  Google Scholar 

  86. Zuo, W., Wei, J.: Stability and bifurcation in a ratio-dependent Holling-III system with diffusion and delay. Nonlinear Anal. Model Control 19, 132–153 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  87. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89, 1569–1578 (2017)

    Article  MathSciNet  Google Scholar 

  88. Sun, G.-Q., Wang, S.-L., Ren, Q., et al.: Effects of time delay and space on herbivore dynamics: linking inducible defenses of plants to herbivore outbreak. Sci. Rep. 5, 11246 (2015)

    Article  Google Scholar 

  89. Li, L., Jin, Z., Li, J.: Periodic solutions in a herbivore-plant system with time delay and spatial diffusion. Appl. Math. Model. 40, 4765–4777 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  90. Huffaker, C.: Experimental studies on predation: dispersion factors and predator-prey oscillations. Hilgardia 27, 343–383 (1958)

    Article  Google Scholar 

  91. Cantrell, R.S., Cosner, C.: The effects of spatial heterogeneity in population dynamics. J. Math. Biol. 29, 315–338 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  92. Okubo, A., Levin, S.A.: Diffusion and ecological problems: modern perspectives, vol. 14. Springer Science & Business Media, Berlin (2013)

    MATH  Google Scholar 

  93. Skellam, J.G.: Random dispersal in theoretical populations. Biometrika 38, 196–218 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  94. Liang, S., Lou, Y.: On the dependence of population size upon random dispersal rate. Discrete Contin. Dyn. Syst.-Ser. B 17, 2771–2788 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  95. DeAngelis, D.L., Ni, W.-M., Zhang, B.: Dispersal and spatial heterogeneity: single species. J. Math. Biol. 72, 239–254 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  96. Hutson, V., Lou, Y., Mischaikow, K.: Spatial heterogeneity of resources versus Lotka-Volterra dynamics. J. Differ. Equ. 185, 97–136 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  97. Du, Y.H., Hsu, S.B.: A diffusive predator-prey model in heterogeneous environment. J. Differ. Equ. 203, 331–364 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  98. Wang, Y.-X., Li, W.-T.: Fish-hook shaped global bifurcation branch of a spatially heterogeneous cooperative system with cross-diffusion. J. Differ. Equ. 251, 1670–1695 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  99. Peng, R., Shi, J.: Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: strong interaction case. J. Differ. Equ. 247, 866–886 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  100. Lam, K.-Y., Ni, W.-M.: Uniqueness and complete dynamics in heterogeneous competition-diffusion systems. SIAM J. Appl. Math. 72, 1695–1712 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  101. He, X., Ni, W.-M.: Global dynamics of the Lotka-Volterra competition-diffusion system: diffusion and spatial heterogeneity I. Commun. Pure Appl. Math. 69, 981–1014 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  102. Benson, D.L., Sherratt, J.A., Maini, P.K.: Diffusion driven instability in an inhomogeneous domain. Bull. Math. Biol. 55, 365–384 (1993)

    Article  MATH  Google Scholar 

  103. Page, K., Maini, P.K., Monk, N.A.: Pattern formation in spatially heterogeneous Turing reaction-diffusion models. Phys. D 181, 80–101 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  104. Page, K.M., Maini, P.K., Monk, N.A.: Complex pattern formation in reaction-diffusion systems with spatially varying parameters. Phys. D 202, 95–115 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  105. Iron, D., Ward, M.J.: Spike pinning for the Gierer-Meinhardt model. Math. Comput. Simul.n 55, 419–431 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  106. Ward, M.J., McInerney, D., Houston, P., et al.: The dynamics and pinning of a spike for a reaction-diffusion system. SIAM J. Appl. Math. 62, 1297–1328 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  107. Krause, A.L., Klika, V., Woolley, T.E., et al.: Heterogeneity induces spatiotemporal oscillations in reaction-diffusion systems. Phys. Rev. E 97, 052206 (2018)

    Article  MathSciNet  Google Scholar 

  108. Pickett, S.T., Cadenasso, M.L.: Landscape ecology: spatial heterogeneity in ecological systems. Science 269, 331–334 (1995)

    Article  Google Scholar 

  109. Clobert, J., Le Galliard, J.F., Cote, J., et al.: Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209 (2009)

    Article  Google Scholar 

  110. Warmflash, A., Sorre, B., Etoc, F., et al.: A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat. Methods 11, 847–854 (2014)

    Article  Google Scholar 

  111. Cárdenas, M.L., Gosling, W.D., Sherlock, S.C., et al.: The Response of Vegetation on the Andean Flank in Western Amazonia to Pleistocene Climate Change. Science 331, 1054–1057 (2011)

    Article  Google Scholar 

  112. Kefi, S., Rietkerk, M., Alados, C.L., et al.: Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449, 213–217 (2007)

    Article  Google Scholar 

  113. Sun, G.-Q., Jusup, M., Jin, Z., et al.: Pattern transitions in spatial epidemics: Mechanisms and emergent properties. Phys. Life Rev. 19, 43–73 (2016)

    Article  Google Scholar 

  114. Rietkerk, M.: Self-Organized Patchiness and Catastrophic Shifts in Ecosystems. Science 305, 1926–1929 (2004)

    Article  Google Scholar 

  115. Tarnita, C.E., Bonachela, J.A., Sheffer, E., et al.: A theoretical foundation for multi-scale regular vegetation patterns. Nature 541, 398–401 (2017)

    Article  Google Scholar 

  116. Chekroun, A., Kuniya, T.: Stability and existence results for a time-delayed nonlocal model of hematopoietic stem cells dynamics. J. Math. Anal. Appl. 463, 1147–1168 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  117. Huang, J., Yu, H., Guan, X., et al.: Accelerated dryland expansion under climate change. Nature Climate Change 6, 166–171 (2016)

    Article  Google Scholar 

  118. Pecl, G.T., Araujo, M.B., Bell, J.D.: Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science eaai355, 9214 (2017)

    Article  Google Scholar 

  119. Hoegh-Guldberg, O., Bruno, J.F.: The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010)

    Article  Google Scholar 

  120. Hughes, T.P., Kerry, J.T., Ivarez-Noriega, M., et al.: Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017)

    Article  Google Scholar 

  121. Trisos, C.H., Merow, C., Pigot, A.L.: The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (Grant No. 2018YFE0109600), National Natural Science Foundation of China under Grant Nos. 42075029, 11671241 and 11801532, Program for the Outstanding Innovative Teams (OIT) of Higher Learning Institutions of Shanxi, Natural Science Foundation of Shanxi Province Grant No. 201801D221003, Outstanding Young Talents Support Plan of Shanxi province, and Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) under Grant No. CUGGC05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Quan Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, GQ., Zhang, HT., Wang, JS. et al. Mathematical modeling and mechanisms of pattern formation in ecological systems: a review . Nonlinear Dyn 104, 1677–1696 (2021). https://doi.org/10.1007/s11071-021-06314-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06314-5

Keywords

Navigation