Skip to main content
Log in

Local Scale Groundwater Vulnerability Assessment with an Improved DRASTIC Model

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The rapid increase in demand and consumption of groundwater in the past few decades has imposed colossal pressure on the stakeholders responsible for groundwater management. Assessment of groundwater vulnerability and knowledge about hydrogeological settings are crucial for a particular region, especially at a local scale, to manage groundwater resources effectively. The present study aimed to develop a modified DRASTIC model to demarcate groundwater vulnerability zones based on experimental analysis of field samples to make the model more feasible at local scale. Four techniques were implemented in this study to determine groundwater vulnerability zones: (a) DRASTIC; (b) DRASTIC–AHP (analytic hierarchy process); (c) Modified DRASTIC; (d) Modified DRASTIC–AHP. The best groundwater vulnerability model was determined based on validation results with groundwater nitrate concentration. The comparative assessment showed that the Modified DRASTIC–AHP outperformed the other models. More than 50% of the study area was classified as ‘high’ (33.06%) and ‘very high’ (21.31%) groundwater vulnerability zones. The vulnerability map shows that high vulnerable zones dominate in the northwestern part and in some portions of the floodplain near central part of the study area. The results of this study envision that inclusion of experimentally derived parameters can be used to modify the conventional DRASTIC model and obtain better results at local scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Ahamad, A., Madhav, S., Singh, P., Pandey, J., & Khan, A. H. (2018). Assessment of groundwater quality with special emphasis on nitrate contamination in parts of Varanasi City, Uttar Pradesh, India. Applied Water Science, 8(4), 1–13.

    Article  Google Scholar 

  • Ahamad, A., Raju, N. J., Madhav, S., Gossel, W., & Wycisk, P. (2019). Impact of non-engineered Bhalswa landfill on groundwater from Quaternary alluvium in Yamuna flood plain and potential human health risk, New Delhi, India. Quaternary International, 507, 352–369.

    Article  Google Scholar 

  • Ahamad, A., Raju, N. J., Madhav, S., & Khan, A. H. (2020). Trace elements contamination in groundwater and associated human health risk in the industrial region of southern Sonbhadra, Uttar Pradesh, India. Environmental Geochemistry and Health, 42(10), 3373–3391.

    Article  Google Scholar 

  • Alam, F., Umar, R., Ahmed, S., & Dar, F. A. (2014). A new model (DRASTIC-LU) for evaluating groundwater vulnerability in parts of central Ganga Plain, India. Arabian Journal of Geosciences, 7(3), 927–937.

    Article  Google Scholar 

  • Aller, L., Lehr, J. H., & Petty, R. (1987). DRASTIC: a standardized system to evaluate ground water pollution potential using hydrogeologic settings (p. 43085). Ohio: National Water Well Association Worthington.

    Google Scholar 

  • APHA. (2005). Standard Methods for the Examination of Water and Wastewater, 21st ed.; APHA:Washington, DC, USA, 2005. American Water Works Association/American Public Works Association/Water Environment Federation. doi: https://doi.org/10.2105/AJPH.51.6.940-a

  • Asadi, P., Hosseini, S. M., Ataie-Ashtiani, B., & Simmons, C. T. (2017). Fuzzy vulnerability mapping of urban groundwater systems to nitrate contamination. Environmental Modelling and Software, 96, 146–157.

    Article  Google Scholar 

  • Baghapour, M. A., Nobandegani, A. F., Talebbeydokhti, N., Bagherzadeh, S., Nadiri, A. A., Gharekhani, M., & Chitsazan, N. (2016). Optimization of DRASTIC method by artificial neural network, nitrate vulnerability index, and composite DRASTIC models to assess groundwater vulnerability for unconfined aquifer of Shiraz Plain, Iran. Journal of Environmental Health Science and Engineering, 14(1), 1–16.

    Article  Google Scholar 

  • Bai, L., Wang, Y., & Meng, F. (2012). Application of DRASTIC and extension theory in the groundwater vulnerability evaluation. Water and Environment Journal, 26(3), 381–391.

    Article  Google Scholar 

  • Barzegar, R., Asghari Moghaddam, A., Norallahi, S., Inam, A., Adamowski, J., Alizadeh, M. R., & Bou Nassar, J. (2019). Modification of the DRASTIC framework for mapping groundwater vulnerability zones. Groundwater. https://doi.org/10.1111/gwat.12919.

    Article  Google Scholar 

  • Bhattacharyya, T., Sarkar, D., Pal, D. K., Mandal, C., Baruah, U., Telpande, B., & Vaidya, P. H. (2010). Soil information system for resource management: Tripura as a case study. Current Science, 99(9), 1208–1217.

    Google Scholar 

  • Boufekane, A., & Saighi, O. (2018). Application of groundwater vulnerability overlay and index methods to the Jijel plain area (Algeria). Groundwater, 56(1), 143–156.

    Article  Google Scholar 

  • Calzolari, C., Ungaro, F., Filippi, N., Guermandi, M., Malucelli, F., Marchi, N., et al. (2016). A methodological framework to assess the multiple contributions of soils to ecosystem services delivery at regional scale. Geoderma, 261, 190–203.

    Article  Google Scholar 

  • Food and Agriculture Organization. (2017). Soil Permiability. http://www.fao.org/tempref/FI/CDrom/FAO_Training/FAO_Training/General/x6706e/x6706e09.htm. Accessed 21 Mar 2020

  • Ghosh, A., Tiwari, A. K., & Das, S. (2015). A GIS based DRASTIC model for assessing groundwater vulnerability of Katri Watershed, Dhanbad, India. Modeling Earth Systems and Environment, 1(3), 1–14.

    Article  Google Scholar 

  • Hamza, S. M., Ahsan, A., Imteaz, M. A., Rahman, A., Mohammad, T. A., & Ghazali, A. H. (2015). Accomplishment and subjectivity of GIS-based DRASTIC groundwater vulnerability assessment method: a review. Environmental Earth Sciences, 73(7), 3063–3076.

    Article  Google Scholar 

  • Hasan, M., Islam, M. A., Aziz Hasan, M., Alam, M. J., & Peas, M. H. (2019). Groundwater vulnerability assessment in Savar upazila of Dhaka district, Bangladesh: a GIS-based DRASTIC modeling. Groundwater for Sustainable Development, 9, 100220.

    Article  Google Scholar 

  • He, H., Li, X., Li, X., Cui, J., Zhang, W., & Xu, W. (2018). Optimizing the DRASTIC method for nitrate pollution in groundwater vulnerability assessments: a case study in China. Polish Journal of Environmental Studies, 27(1), 95–107.

    Article  Google Scholar 

  • Hentati, I., Zaïri, M., & Ben Dhia, H. (2011). A statistical and geographical information system analysis for groundwater intrinsic vulnerability: a validated case study from Sfax-Agareb, Tunisia. Water and Environment Journal, 25(3), 400–411.

    Article  Google Scholar 

  • Hu, X., Ma, C., Qi, H., & Guo, X. (2018). Groundwater vulnerability assessment using the GALDIT model and the improved DRASTIC model: a case in Weibei Plain, China. Environmental Science and Pollution Research, 25(32), 32524–32539.

    Article  Google Scholar 

  • Jafari, S. M., & Nikoo, M. R. (2019). Developing a fuzzy optimization model for groundwater risk assessment based on improved DRASTIC method. Environmental Earth Sciences, 78(4), 1–16.

    Article  Google Scholar 

  • Jhariya, D. C. (2019). Assessment of groundwater pollution vulnerability using GIS-based DRASTIC model and its validation using nitrate concentration in Tandula Watershed, Chhattisgarh. Journal of the Geological Society of India, 93(5), 567–573.

    Article  Google Scholar 

  • Jhariya, D. C., Kumar, T., Pandey, H. K., Kumar, S., Kumar, D., Gautam, A. K., et al. (2019). Assessment of groundwater vulnerability to pollution by modified DRASTIC model and analytic hierarchy process. Environmental Earth Sciences, 78(20), 1–20.

    Article  Google Scholar 

  • Jia, Z., Bian, J., Wang, Y., Wan, H., Sun, X., & Li, Q. (2019). Assessment and validation of groundwater vulnerability to nitrate in porous aquifers based on a DRASTIC method modified by projection pursuit dynamic clustering model. Journal of Contaminant Hydrology, 226, 103522.

    Article  Google Scholar 

  • Kang, J., Zhao, L., Li, R., Mo, H., & Li, Y. (2017). Groundwater vulnerability assessment based on modified DRASTIC model: a case study in Changli County, China. Geocarto International, 32(7), 749–758.

    Article  Google Scholar 

  • Karan, S. K., Samadder, S. R., & Singh, V. (2018). Groundwater vulnerability assessment in degraded coal mining areas using the AHP–Modified DRASTIC model. Land Degradation and Development, 29(8), 2351–2365.

    Article  Google Scholar 

  • Khan, R., & Jhariya, D. C. (2019). Assessment of groundwater pollution vulnerability using GIS based modified DRASTIC model in Raipur City, Chhattisgarh. Journal of the Geological Society of India, 93(3), 293–304.

    Article  Google Scholar 

  • Khodabakhshi, N., Heidarzadeh, N., & Asadollahfardi, G. (2017). Vulnerability assessment of an aquifer using modified GIS-based methods. Journal American Water Works Association. https://doi.org/10.5942/jawwa.2017.109.0039.

    Article  Google Scholar 

  • Khosravi, K., Sartaj, M., Tsai, F. T. C., Singh, V. P., Kazakis, N., Melesse, A. M., et al. (2018). A comparison study of DRASTIC methods with various objective methods for groundwater vulnerability assessment. Science of the Total Environment, 642, 1032–1049.

    Article  Google Scholar 

  • Kumar, A., & Pramod Krishna, A. (2020). Groundwater vulnerability and contamination risk assessment using GIS-based modified DRASTIC-LU model in hard rock aquifer system in India. Geocarto International, 35(11), 1149–1178.

    Article  Google Scholar 

  • Kumar, P., Thakur, P. K., Bansod, B. K., & Debnath, S. K. (2017). Multi-criteria evaluation of hydro-geological and anthropogenic parameters for the groundwater vulnerability assessment. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-017-6267-x.

    Article  Google Scholar 

  • Leone, A., Ripa, M. N., Uricchio, V., Deák, J., & Vargay, Z. (2009). Vulnerability and risk evaluation of agricultural nitrogen pollution for Hungary’s main aquifer using DRASTIC and GLEAMS models. Journal of Environmental Management, 90(10), 2969–2978.

    Article  Google Scholar 

  • Li, J., Xi, B., Cai, W., Yang, Y., Jia, Y., Li, X., et al. (2017). Identification of dominating factors affecting vadose zone vulnerability by a simulation method. Scientific Reports, 7, 1–14. https://doi.org/10.1038/srep45955.

    Article  Google Scholar 

  • Li, X., Cundy, A. B., Chen, W., Liu, R., & Lv, S. (2020). Dynamic capacity modelling of soil environment carrying capacity, and developing a soil quality early warning framework for development land in China. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2020.120450.

    Article  Google Scholar 

  • Liu, R., Wang, M., Chen, W., & Peng, C. (2016). Spatial pattern of heavy metals accumulation risk in urban soils of Beijing and its influencing factors. Environmental Pollution, 210, 174–181.

    Article  Google Scholar 

  • Madhav, S., Raju, N. J., & Ahamad, A. (2020). A study of hydrogeochemical processes using integrated geochemical and multivariate statistical methods and health risk assessment of groundwater in Trans-Varuna region, Uttar Pradesh. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-020-00928-2.

    Article  Google Scholar 

  • Mallik, S., Bhowmik, T., Mishra, U., & Paul, N. (2020). Mapping and prediction of soil organic carbon by an advanced geostatistical technique using remote sensing and terrain data. Geocarto International. https://doi.org/10.1080/10106049.2020.1815864.

    Article  Google Scholar 

  • Mallik, S., & Mishra, U. (2020). Assessment of spatial variations in groundwater quality of agartala, tripura for drinking employing GIS and MCDA techniques. Lecture Notes in Civil Engineering. https://doi.org/10.1007/978-981-13-7067-0_22.

    Article  Google Scholar 

  • Mallik, S., Mishra, U., & Paul, N. (2021). Groundwater suitability analysis for drinking using GIS based fuzzy logic. Ecological Indicators, 121, 107179.

    Article  Google Scholar 

  • Neshat, A., Pradhan, B., & Dadras, M. (2014). Groundwater vulnerability assessment using an improved DRASTIC method in GIS. Resources, Conservation and Recycling, 86, 74–86.

    Article  Google Scholar 

  • Ojeda Olivares, E. A., Belmonte Jiménez, S. I., Sandoval Torres, S., Campos Enríquez, J. O., Tiefenbacher, J. P., & Takaro, T. K. (2020). A simple method to evaluate groundwater vulnerability in urbanizing agricultural regions. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2020.110164.

    Article  Google Scholar 

  • Olmstead, L. B., Alexander, L. T., & Middleton, H. E. (1930). A pipette method of mechanical analysis of soils based ion improved dispersion procedure. Technical Bulletins. https://doi.org/10.22004/ag.econ.158882.

    Article  Google Scholar 

  • Piscopo, G. (2001). Groundwater vulnerability map explanatory notes groundwater vulnerability map explanatory notes Castlereagh Catchment. Centre for Natural Resources, NSW Department of Land and Water Conservation, 18

  • Rahman, A. (2008). A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India. Applied Geography, 28(1), 32–53.

    Article  Google Scholar 

  • Rajput, H., Goyal, R., & Brighu, U. (2020). Modification and optimization of DRASTIC model for groundwater vulnerability and contamination risk assessment for Bhiwadi region of Rajasthan, India. Environmental Earth Sciences, 79(6), 1–15.

    Article  Google Scholar 

  • Ross, D. S., & Ketterings, Q. (1995). Recommended methods for determining soil cation exchange capacity. In Cooperative Bulletin No. 493. Recommended Soil Testing Procedures for the Northeastern United States. doi: https://doi.org/10.1177/004057368303900411

  • Saaty, R. W. (1987). The analytic hierarchy process-what it is and how it is used. Mathematical Modelling, 9(3–5), 161–176.

    Article  Google Scholar 

  • Saaty, T. L. (2004). Fundamentals of the analytic network process: multiple networks with benefits, costs, opportunities and risks. Journal of Systems Science and Systems Engineering, 13(3), 348–379.

    Article  Google Scholar 

  • Safa, G., Najiba, C., El Houda, B. N., Monji, H., Soumaya, A., & Kamel, Z. (2020). Assessment of urban groundwater vulnerability in arid areas: Case of Sidi Bouzid aquifer (central Tunisia). Journal of African Earth Sciences, 168, 103849.

    Article  Google Scholar 

  • Saha, D., & Alam, F. (2014). Groundwater vulnerability assessment using DRASTIC and Pesticide DRASTIC models in intense agriculture area of the Gangetic plains, India. Environmental Monitoring and Assessment, 186(12), 8741–8763.

    Article  Google Scholar 

  • Sahoo, S., Dhar, A., Debsarkar, A., & Kar, A. (2019). Future scenarios of environmental vulnerability mapping using grey analytic hierarchy process. Natural Resources Research, 28(4), 1461–1483.

    Article  Google Scholar 

  • Santhosh, L. G., & Sivakumar Babu, G. L. (2018). Landfill site selection based on reliability concepts using the DRASTIC method and AHP integrated with GIS: a case study of Bengaluru city, India. Georisk, 12(3), 1–19.

    Google Scholar 

  • Schillaci, C., Acutis, M., Lombardo, L., Lipani, A., Fantappiè, M., Märker, M., & Saia, S. (2017). Spatio-temporal topsoil organic carbon mapping of a semi-arid Mediterranean region: the role of land use, soil texture, topographic indices and the influence of remote sensing data to modelling. Science of the Total Environment, 601–602, 821–832.

    Article  Google Scholar 

  • Science, U. S., & Administration, E. (1975). Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. Soil Conservation Service, US Department of Agriculture.

  • Sener, E., & Davraz, A. (2013). Assessment of groundwater vulnerability based on a modified DRASTIC model, GIS and an analytic hierarchy process (AHP) method: the case of Egirdir Lake basin (Isparta, Turkey) Erhan. Hydrogeology Journal, 21(3), 701–714.

    Article  Google Scholar 

  • Shrestha, S., Kafle, R., & Pandey, V. P. (2017). Evaluation of index-overlay methods for groundwater vulnerability and risk assessment in Kathmandu Valley, Nepal. Science of the Total Environment, 575, 779–790.

    Article  Google Scholar 

  • Survey, G. (2011). 2011. Mizoram, Nagaland and Tripura: Geology and mineral resources of Manipur.

    Google Scholar 

  • Taheri, K., Missimer, T. M., Taheri, M., Moayedi, H., & Mohseni Pour, F. (2020). Critical zone assessments of an alluvial aquifer system using the multi-influencing factor (MIF) and analytical hierarchy process (AHP) models in Western Iran. Natural Resources Research, 29(2), 1163–1191.

    Article  Google Scholar 

  • Tiwari, A. K., Singh, P. K., & De Maio, M. (2016). Evaluation of aquifer vulnerability in a coal mining of India by using GIS-based DRASTIC model. Arabian Journal of Geosciences, 9(6), 1–15.

    Article  Google Scholar 

  • Tiwari, A. K., Suozzi, E., Fiorucci, A., & Lo Russo, S. (2020). Assessment of groundwater geochemistry and human health risk of an intensively cropped alluvial plain, NW Italy. Human and Ecological Risk Assessment, 0(0), 1–21.

  • Umar, R., Ahmed, I., & Alam, F. (2009). Mapping groundwater vulnerable zones using modified DRASTIC approach of an alluvial aquifer in parts of central Ganga plain, western Uttar Pradesh. Journal of the Geological Society of India, 73(2), 193–201.

    Article  Google Scholar 

  • Wang, M., Faber, J. H., Chen, W., Li, X., & Markert, B. (2015). Effects of land use intensity on the natural attenuation capacity of urban soils in Beijing, China. Ecotoxicology and Environmental Safety, 117, 89–95.

    Article  Google Scholar 

  • Wu, X., Li, B., & Ma, C. (2018). Assessment of groundwater vulnerability by applying the modified DRASTIC model in Beihai City, China. Environmental Science and Pollution Research, 25(13), 12713–12727.

    Article  Google Scholar 

  • Xie, T., Wang, M., Su, C., & Chen, W. (2018). Evaluation of the natural attenuation capacity of urban residential soils with ecosystem-service performance index (EPX) and entropy-weight methods. Environmental Pollution, 238, 222–229.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Principal College of Agriculture, Tripura and Department of Soil Science lab for providing us resources to carry out the lab testing and analysis as well as Central groundwater Board, North Eastern Region (NER), Guwahati (CGWB) and Drinking Water & Sanitation division (DWS) under Public Works Department (PWD), Agartala for sharing necessary data for the analysis. The authors also thank the reviewers and the editor for providing valuable suggestions and technical comments to improve the manuscript quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santanu Mallik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallik, S., Bhowmik, T., Mishra, U. et al. Local Scale Groundwater Vulnerability Assessment with an Improved DRASTIC Model. Nat Resour Res 30, 2145–2160 (2021). https://doi.org/10.1007/s11053-021-09839-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-021-09839-z

Keywords

Navigation