Skip to main content
Log in

Tensor categories of affine Lie algebras beyond admissible levels

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We show that if V is a vertex operator algebra such that all the irreducible ordinary V-modules are \(C_1\)-cofinite and all the grading-restricted generalized Verma modules for V are of finite length, then the category of finite length generalized V-modules has a braided tensor category structure. By applying the general theorem to the simple affine vertex operator algebra (resp. superalgebra) associated to a finite simple Lie algebra (resp. Lie superalgebra) \(\mathfrak {g}\) at level k and the category \(KL_k(\mathfrak {g})\) of its finite length generalized modules, we discover several families of \(KL_k(\mathfrak {g})\) at non-admissible levels k, having braided tensor category structures. In particular, \(KL_k(\mathfrak {g})\) has a braided tensor category structure if the category of ordinary modules is semisimple or more generally if the category of ordinary modules is of finite length. We also prove the rigidity and determine the fusion rules of some categories \(KL_k(\mathfrak {g})\), including the category \(KL_{-1}(\mathfrak {sl}_n)\). Using these results, we construct a rigid tensor category structure on a full subcategory of \(KL_1(\mathfrak {sl}(n|m))\) consisting of objects with semisimple Cartan subalgebra actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamović, D.: A realization of certain modules for the \(N=4\) superconformal algebra and the affine Lie algebra \(A_2 ^{(1)}\). Transf. Groups 21(2), 299–327 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adamović, D., Creutzig, T., Genra, N., Yang, J.: The vertex algebras \(\cal{R}^{(p)}\) and \(\cal{V}^{(p)}\). Commun. Math. Phys. arXiv:2001.08048(to appear)

  3. Adamović, D., Möseneder Frajria, P., Papi, P., Perše, O.: Conformal embeddings in affine vertex superalgebras. Adv. Math. 360, 106918 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Adamović, D., Kac, V.G., Möseneder Frajria, P., Papi, P., Perše, O.: Conformal embeddings of affine vertex algebra in minimal \(\cal{W}\)-algebras I: structural results. J. Algebra 500, 117–152 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Adamović, D., Kac, V.G., Möseneder Frajria, P., Papi, P., Perse, O.: An application of collapsing levels to the representation theory of affine Lie algebras. Int. Math. Res. Not. arXiv:1801.09880

  6. Adamović, D., Kac, V.G., Möseneder Frajria, P., Papi, P., Perse, O.: Conformal embeddings of affine vertex algebras in minimal \(W\)-algebras II: decompositions. Jpn. J. Math. 12, 261–315 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Adamović, D., Kac, V.G., Möseneder Frajria, P., Papi, P., Perse, O.: Finite vs infinite decompositions in conformal embeddings. Commun. Math. Phys. 348, 445–473 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Adamović, D., Perše, O.: Representations of certain non-rational vertex operator algebras of affine type. J. Algebra 319, 2434–2450 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Adamović, D., Perše, O.: Fusion rules and complete reducibility of certain modules for affine Lie algebras. J. Algebra Appl. 13, 1350062 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Arakawa, T.: Rationality of admissible affine vertex algebras in the category \(\cal{O}\). Duke Math. J. 165, 67–93 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Arakawa, T.: Rationality of \(W\)-algebras: principle and nilpotent cases. Ann. Math. 182(2), 565–694 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Arakawa, T.: Representation theory of superconformal algebras and the Kac–Roan–Wakimoto conjecture. Duke Math. J. 130, 435–478 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Arakawa, T., Creutzig, T., Kawasetsu, K., Linshaw, A.: Orbifolds and cosets of minimal \(W\)-algebras. Commun. Math. Phys. 355(1), 339–372 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Arakawa, T., Creutzig, T., Linshaw, A.: W-algebras as coset vertex algebras. Invent. Math. 218(1), 145–195 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Arakawa, T., Moreau, A.: Joseph ideas and Lisse minimal \(W\)-algebras. J. Inst. Math. Jussieu 17(2), 397–417 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Arakawa, T., Moreau, A.: Sheets and associated varieties of affine vertex algebras. Adv. Math. 320, 157–209 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Auger, J., Rupert, M.: On infinite order simple current extensions of vertex operator algebras, Vertex Algebras and Geometry, pp. 143–168, Contemp. Math., vol. 711. Amer. Math. Soc., Providence (2018)

  18. Auger, J., Creutzig, T., Kanade, S., Rupert, M.: Braided tensor categories related to \(\cal{B}_p\) vertex algebras. Commun. Math. Phys. 378(1), 219–260 (2020)

    Article  MATH  Google Scholar 

  19. Beilinson, A., Feigin, B., Mazur, B.: Introduction to algebraic field theory on curves (preprint) (1991)

  20. Belavin, A., Polyakov, A., Zamolodchikov, A.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241, 333–380 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Carnahan, S., Miyamoto, M.: Regularity of fixed-point vertex operator algebras. arXiv:1603.05645

  22. Casian, L.: Kazhdan–Lusztig multiplicity formula for Kac–Moody algebra. C. R. Acad. Sci. Paris 310, 333–337 (1990)

    MathSciNet  MATH  Google Scholar 

  23. Creutzig, T.: \(W\)-algebras for Argyres–Douglas theories. Eur. J. Math. 3(3), 659–690 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Creutzig, T.: Fusion categories for affine vertex algebras at admissible levels. Selecta Math. (N.S.) 25(2), Art. 27 (2019)

  25. Creutzig, T.: Logarithmic \(W\)-algebras and Argyres–Douglas theories at higher rank. JHEP 1811, 188 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Creutzig, T., Gaiotto, D.: Vertex algebras for S-duality. Commun. Math. Phys. 379(3), 785–845 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Creutzig, T., Gaiotto, D., Linshaw, A.R.: S-duality for the large \(N = 4\) superconformal algebra. Commun. Math. Phys. 374(3), 1787–1808 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Creutzig, T., Gainutdinov, A.M., Runkel, I.: A quasi-Hopf algebra for the triplet vertex operator algebra. Commun. Contemp. Math. 22(3), 1950024 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Creutzig, T., Huang, Y.-Z., Yang, J.: Braided tensor categories of admissible modules for affine Lie algebras. Commun. Math. Phys. 362(3), 827–854 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Creutzig, T., Orosz Hunziker, F., Jiang, C., Ridout, D., Yang, J.: Tensor categories arising from the Virasoro algebra. Adv. Math. 380, 107601 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Creutzig, T., Kanade, S., Linshaw, A.: Simple current extensions beyond semi-simplicity. Commun. Contemp. Math. 22(1), 1950001 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Creutzig, T., Kanade, S., Linshaw, A.R., Ridout, D.: Schur–Weyl duality for Heisenberg cosets. Transf. Groups 24, 301 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Creutzig, T., Kanade, S., McRae, R.: Tensor categories for vertex operator superalgebra extensions. arXiv:1705.05017

  34. Creutzig, T., Kanade, S., McRae, R.: Gluing vertex algebras. arXiv:1906.00119

  35. Creutzig, T., Linshaw, A.: Trialities of \(\cal{W}\)-algebras. arXiv:2005.10234

  36. Creutzig, T., Milas, A., Rupert, M.: Logarithmic link invariants of \(\overline{U}_q^H(\mathfrak{sl}_2)\) and asymptotic dimensions of singlet vertex algebras. J. Pure Appl. Algebra 222(10), 3224–3247 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Creutzig, T., McRae, R., Yang, J.: Direct limit completions of vertex tensor categories. arXiv:2006.09711

  38. Creutzig, T., McRae, R., Yang, J.: Tensor structure on the Kazhdan–Lusztig category for affine \(\mathfrak{gl}(1|1)\). arXiv:2009.00818

  39. Creutzig, T., Ridout, D.: Relating the archetypes of logarithmic conformal field theory. Nucl. Phys. B 872(3), 348–391 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Creutzig, T., Ridout, D.: Modular data and Verlinde formulae for fractional level WZW models II. Nucl. Phys. B 875, 423–458 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Deodhar, V., Gabber, O., Kac, V.: Structure of some categories of representations of infinite dimensional Lie algebras. Adv. Math. 45, 92–116 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  42. Dong, C., Li, H., Mason, G.: Compact automorphism groups of vertex operator algebras. Int. Math. Res. Not. IMRN, 913–921 (1996)

  43. Dong, C., Li, H., Mason, G.: Vertex operator algebras and associative algebras. J. Algebra 206, 67–98 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  44. Dong, C., Mason, G., Zhu, Y.: Discrete series of the Virasoro algebra and the moonshine module. Proc. Sympos. Math. Am. Math. Soc. 56(2), 295–316 (1994)

    MathSciNet  MATH  Google Scholar 

  45. Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor Categories, Mathematical Surveys and Monographs, vol. 205. American Mathematical Society, Providence (2015)

    Book  MATH  Google Scholar 

  46. Frenkel, E., Gaiotto, D.: Quantum Langlands dualities of boundary conditions, D-modules, and conformal blocks. arXiv:1805.00203

  47. Frenkel, I.B., Huang, Y.-Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc., vol. 104, Amer. Math. Soc., Providence, no. 494 (preprint, 1989) (1993)

  48. Frenkel, I.B., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster, Pure and Appl. Math., vol. 134. Academic Press, Boston (1988)

    MATH  Google Scholar 

  49. Frenkel, I.B., Zhu, Y.: Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J. 66, 123–168 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  50. Gorelik, M., Kac, V.: On complete reducibility for infinite-dimensional Lie algebras. Adv. Math. 226, 1911–1972 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Huang, Y.-Z.: A theory of tensor products for module categories for a vertex operator algebra, IV. J. Pure. Appl. Algebra 100, 173–216 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  52. Huang, Y.-Z.: Differential equations and intertwining operators. Commun. Contemp. Math. 7, 375–400 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  53. Huang, Y.-Z.: Vertex operator algebras and the Verlinde conjecture. Commun. Contemp. Math. 10, 103–154 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  54. Huang, Y.-Z.: Rigidity and modularity of vertex tensor categories. Commun. Contemp. Math. 10, 871–911 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  55. Huang, Y.-Z.: Cofiniteness conditions, projective covers and the logarithmic tensor product theory. J. Pure Appl. Algebra 213(4), 458–475 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  56. Huang, Y.-Z.: On the applicability of logarithmic tensor category theory. arXiv:1702.00133

  57. Huang, Y.-Z.: Affine Lie algebras and tensor categories, 14 pages. In: Proceedings of 10th CFT Seminar: A Conference on Vertex Algebras and Related Topics at RIMS (to appear)

  58. Huang, Y.-Z., Kirillov, A., Lepowsky, J.: Braided tensor categories and extensions of vertex operator algebras. Commun. Math. Phys. 337, 1143–1159 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  59. Huang, Y.-Z., Lepowsky, J.: Toward a theory of tensor products for representations of a vertex operator algebra. In: Catto, S., Rocha, A. (eds.) Proc. 20th International Conference on Differential Geometric Methods in Theoretical Physics, Vol. 1, New York, 1991. World Scientific, Singapore, pp. 344–354 (1992)

  60. Huang, Y.-Z., Lepowsky, J.: Tensor products of modules for a vertex operator algebra and vertex tensor categories. In: Brylinski, R., Brylinski, J.-L., Guillemin, V., Kac, V. (eds.) Lie Theory and Geometry, in Honor of Bertram Konstant, pp. 349–383. Birkhäuser, Boston (1994)

    Chapter  Google Scholar 

  61. Huang, Y.-Z., Lepowsky, J.: A theory of tensor products for module categories for a vertex operator algebra, I. Selecta Math. New Ser. 1, 699–756 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  62. Huang, Y.-Z., Lepowsky, J.: A theory of tensor products for module categories for a vertex operator algebra, II. Selecta Math. New Ser. 1, 757–786 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  63. Huang, Y.-Z., Lepowsky, J.: A theory of tensor products for module categories for a vertex operator algebra, III. J. Pure. Appl. Algebra 100, 141–171 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  64. Huang, Y.-Z., Lepowsky, J.: A theory of tensor products for module categories for a vertex operator algebra, V (to appear)

  65. Huang, Y.-Z., Lepowsky, J.: Intertwining operator algebras and vertex tensor categories for affine Lie algebras. Duke Math. J. 99, 113–134 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  66. Huang, Y.-Z., Lepowsky, J., Zhang, L.: A logarithmic generalization of tensor product theory for modules for a vertex operator algebra. Int. J. Math. 17, 975–1012 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  67. Huang, Y.-Z., Lepowsky, J,, Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, I: introduction and strongly graded algebras and their generalized modules, conformal field theories and tensor categories. In: Bai, C., Fuchs, J., Huang, Y.-Z., Kong, L., Runkel, I., Schweigert, C. (eds.) Proceedings of a Workshop Held at Beijing International Center for Mathematics Research. Mathematical Lectures from Beijing University, Vol. 2. Springer, New York, pp. 169–248 (2014)

  68. Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, II: logarithmic formal calculus and properties of logarithmic intertwining operators. arXiv:1012.4196

  69. Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, III: intertwining maps and tensor product bifunctors. arXiv:1012.4197

  70. Huang, Y.-Z., Lepowsky, J,, Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, IV: construction of tensor product bifunctors and the compatibility conditions. arXiv:1012.4198

  71. Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, V: convergence condition for intertwining maps and the corresponding compatibility condition. arXiv:1012.4199

  72. Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, VI: expansion condition, associativity of logarithmic intertwining operators, and the associativity isomorphisms. arXiv:1012.4202

  73. Huang, Y.-Z. Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, VII: convergence and extension properties and applications to expansion for intertwining maps. arXiv:1110.1929

  74. Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, VIII: braided tensor category structure on categories of generalized modules for a conformal vertex algebra. arXiv:1110.1931

  75. Kac, V.G.: Lie superalgebras. Adv. Math. 26, 8–96 (1977)

    Article  MATH  Google Scholar 

  76. Kac, V.G.: Vertex Algebras for Beginners, University Lecture Series, 2nd edn, vol. 10. AMS, Providence (1998)

  77. Kac, V., Kazhdan, D.: Structure of representations with highest weight of infinite dimensional Lie algebras. Adv. Math. 34, 97–184 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  78. Kac, V.G., Roan, S., Wakimoto, M.: Quantum reduction for affine superalgebras. Commun. Math. Phys. 241, 307–342 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  79. Kac, V.G., Wakimoto, M.: Quantum reduction and representation theory of superconformal algebras. Adv. Math. 185, 400–458 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  80. Kashiwara, M.: Kazhdan–Lusztig conjecture for symmetrizable Kac–Moody Lie algebra. Prog. Math. 87, 407–433 (1991)

    MathSciNet  Google Scholar 

  81. Kashiwara, M., Tanisaki, T.: Kazhdan–Lusztig conjecture for symmetrizable KacMoody Lie algebras II, Progess in Math., vol. 92, pp. 159–195. Birkhäuser, Basel (1990)

    MATH  Google Scholar 

  82. Kashiwara, M., Schapira, P.: Categories and Sheaves, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 332. Springer, Berlin (2005)

    Google Scholar 

  83. Kawasetsu, K.: \(W\)-algebras with non-admissible levels and the Deligne exceptional series. Int. Math. Res. Not., 641–676 (2018)

  84. Kawasetsu, K., Ridout, D.: Relaxed highest-weight modules I: rank \(1\) cases. Commun. Math. Phys. 368(2), 627–664 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  85. Kawasetsu, K., Ridout, D.: Relaxed highest-weight modules II: classifications for affine vertex algebras. arXiv:1906.02935 [math.RT]

  86. Kazhdan, D., Lusztig, G.: Affine Lie algebras and quantum groups. Int. Math. Res. Not. (in Duke Math. J.) 2, 21–29 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  87. Kazhdan, D., Lusztig, G.: Tensor structure arising from affine Lie algebras, I. J. Am. Math. Soc. 6, 905–947 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  88. Kazhdan, D., Lusztig, G.: Tensor structure arising from affine Lie algebras, II. J. Am. Math. Soc. 6, 949–1011 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  89. Kazhdan, D., Lusztig, G.: Tensor structure arising from affine Lie algebras, III. J. Am. Math. Soc. 7, 335–381 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  90. Kazhdan, D., Lusztig, G.: Tensor structure arising from affine Lie algebras, IV. J. Am. Math. Soc. 7, 383–453 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  91. Kirillov, A., Ostrik, V.: On a \(q\)-analogue of the McKay correspondence and the \(ADE\) classification of \(\mathfrak{sl}_2\) conformal field theories. Adv. Math. 171, 183–227 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  92. Knizhnik, V., Zamolodchikov, A.: Current algebra and Wess–Zumino models in two dimensions. Nucl. Phys. B 247, 83–103 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  93. Kumar, S.: Extension of the category \({\cal{O}}^g\) and a vanishing theorem for the Ext functor for Kac–Moody algebras. J. Algebra 108(2), 472–491 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  94. Lepowsky, J., Li, H.: Introduction to Vertex Operator Algebras and Their Representations, Progress in Math, vol. 227. Birkhäuser, Boston (2003)

    Google Scholar 

  95. Li, H.S.: Determining fusion rules by \(A(V)\)-modules and bimodules. J. Algebra 212, 515–556 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  96. McRae, R.: On the tensor structure of modules for compact orbifold vertex operator algebras. Math. Z. 296, 409–452 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  97. Miyamoto, M.: \(C_1\)-cofiniteness and fusion products of vertex operator algebras, conformal field theories and tensor categories. In: Bai, C., Fuchs, J., Huang, Y.-Z., Kong, L., Runkel, I., Schweigert, C. (eds.) Proceedings of a Workshop Held at Beijing International Center for Mathematics Research, Mathematical Lectures from Beijing University, vol. 2. Springer, New York, pp. 271–279 (2014). arXiv:1305.3008

  98. Moore, G., Seiberg, N.: Polynomial equations for rational conformal field theories. Phys. Lett. B 212, 451–460 (1988)

    Article  MathSciNet  Google Scholar 

  99. Moore, G., Seiberg, N.: Classical and quantum conformal field theory. Commun. Math. Phys. 123, 177–254 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  100. Seshadri, C.S.: Space of unitary vector bundles on a compact Riemann surface. Ann. Math. 85, 303–336 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  101. Zhang, L.: Vertex tensor category structure on a category of Kazhdan–Lusztig. N. Y. J. Math. 14, 261–284 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwei Yang.

Additional information

Communicated by Wei Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We would like to thank Drazen Adamović, Naoki Genra, Yi-Zhi Huang, Shashank Kanade, Robert McRae, Antun Milas and David Ridout for useful discussions. We also thank the referee for their valuable comments and suggestions. T. C. is supported by NSERC \(\#\)RES0020460.

Appendix

Appendix

1.1 Change of basis for the root system of \(\mathfrak {sl}(n|m)\)

For the Lie superalgebra \(\mathfrak {sl}(n|m)\), there is no unique simple root system and we choose a distinguished simple root system, i.e. we will only have one odd positive simple root. This is easiest described by embedding it into \(\mathbb {Z}^{n+m} = \mathbb {Z} \epsilon _1 \oplus \dots \oplus \mathbb {Z} \epsilon _n \oplus \mathbb {Z} \delta _1 \dots \oplus \mathbb {Z}\delta _m\) with norm \(\epsilon _i\epsilon _j = \delta _{i, j}\) and \(\delta _i\delta _j = -\delta _{i, j}\) and elements \(a_i \epsilon _1 + \dots a_n \epsilon _n + b_1\delta _1 + \dots b_m \delta _m\) of the root lattice satisfy \(a_1+ \dots + a_n +b_1 + \dots + b_m=0\). For example, we denote \(\Delta _{\overline{0}}^+ \cup \Delta _{\overline{1}}^+\) as a system of positive roots, and denote by \(\Pi \) the corresponding set of positive roots and our choice is

$$\begin{aligned} \begin{aligned} \Delta _{\overline{0}}^+&= \{\epsilon _i-\epsilon _j, \delta _i-\delta _j|i < j\}, \qquad \qquad \Delta _{\overline{1}}^+ = \{\epsilon _i-\delta _j\},\\ \Pi&= \{ \alpha _1, \dots , \alpha _{n+m-1}\}, \\ \alpha _i :&= {\left\{ \begin{array}{ll} \epsilon _i-\epsilon _{i+1}, &{} \quad i=1, \dots , n-1 \\ \epsilon _n-\delta _1, &{} \quad i=n \\ \delta _{m+n-i}-\delta _{m+n+1-i}, &{} \quad i=n+1, \dots , m+n-1 \end{array}\right. }, \end{aligned} \end{aligned}$$
(7.1)

see for example [75] for a reference for the Lie superalgebra \(\mathfrak {sl}(n|m)\) and its root system.

Let us set \(\epsilon := \epsilon _1 + \dots + \epsilon _n\) and \(\delta := \delta _1+ \dots + \delta _m\). The corresponding fundamental weights are

$$\begin{aligned} \begin{aligned} \omega _i&= \frac{1}{n-m} \left( (n-m-i) (\epsilon _1 +\cdots \epsilon _i) - i(\epsilon _{i+1} + \cdots + \epsilon _n -\delta _1 - \cdots - \delta _m) \right) \\&= \frac{i}{n-m}(\delta -\epsilon ) + \epsilon _1 + \dots + \epsilon _i. \end{aligned} \end{aligned}$$

for \(i = 1, \dots , n-1\),

$$\begin{aligned} \omega _n= & {} \frac{1}{n-m}(-m(\epsilon _1 + \cdots + \epsilon _{n}) + n(\delta _1 +\cdots + \delta _m)) \\= & {} \frac{-m\epsilon +n\delta }{n-m} = \frac{n}{n-m}(\delta -\epsilon ) + \epsilon \end{aligned}$$

and

$$\begin{aligned} \omega _{n+j} = \frac{j}{n-m}(\delta -\epsilon ) + \delta _{m-j+1} + \dots + \delta _m \end{aligned}$$
(7.2)

for \(j = 1, \dots , m-1\). The positive roots of the even subalgebra are expressed in terms of ours as

$$\begin{aligned} \{ \alpha _1, \dots , \alpha _{n-1}, \mu \omega _n, \alpha _{n+1}, \dots , \alpha _{n+m-1} \}, \end{aligned}$$

where \(\mu = \sqrt{\frac{m-n}{mn}}\) as in Sect. 6.1 and the corresponding fundamental weights are

$$\begin{aligned} \begin{aligned} \nu _i&= -\frac{i}{n}\epsilon + \epsilon _1 + \dots \epsilon _i = \omega _i - \frac{i}{n} \omega _n\\ \nu _n&= -\mu \omega _n \\ \nu _{n+j}&= \frac{j}{m}\delta - (\delta _1 + \dots \delta _j) = \omega _{n+m-j} -\frac{j}{m} \omega _n. \end{aligned} \end{aligned}$$
(7.3)

Thus weight labels translate as

$$\begin{aligned} \begin{aligned} \Lambda&= \sum _{i = 1}^{n+m-1}a_i\nu _i = \sum _{i = 1}^{n+m-1}b_i\omega _i \qquad \text {with} \\ b_i&= a_i, \qquad b_n = -\mu a_n -\frac{1}{n} \sum _{i=1}^{n-1} ia_i - \frac{1}{m} \sum _{j=1}^{m-1} ja_j\qquad \text {and} \qquad b_{n+j} = a_{n+j} \end{aligned} \end{aligned}$$

for \(i=1, \dots , n-1\) and \(j=1, \dots , m-1\).

1.2 Top level of the induced module

Lemma 7.1

The conformal gradings of the induced modules \(\mathcal {F}(M_{a, s,\lambda })\) are bounded from below and the bound is given by

$$\begin{aligned} \frac{n}{2}(z+1)^2 - n\left( \frac{a}{n}+\frac{1}{2}+z\right) (z+1) + \frac{a(n-a)}{2n} + \frac{s(s+m)}{2m} + \frac{\lambda ^2}{2} \end{aligned}$$

if \(-zn-a+s\) is nonnegative; the bound is

$$\begin{aligned} \frac{n}{2}z^2 - zn\left( \frac{a}{n}-\frac{1}{2}+z\right) + \frac{a(n-a)}{2n} + \frac{s(s-m)}{2m} + \frac{\lambda ^2}{2} \end{aligned}$$

if \(-zn-a+s\) is nonpositive.

The proof will be done by analyzing two cases. Let \(t = rn + \bar{t}\) for \(0\le \bar{t} < n\) and \(r \in \mathbb {Z}\).

Case 1 If \(s+t \ge 0\),

$$\begin{aligned}&h_{s+t, \overline{a+t}, \lambda +\mu t} \\&\quad = \frac{(\overline{a+t})(n-\overline{a+t})}{2n} + \frac{(s+t)(s+t+m)}{2m} + \frac{(\lambda + \mu t)^2}{2}\\&\quad = \frac{(\overline{a+t})(n-\overline{a+t})}{2n} + \frac{(s+rn+\overline{t})(s+rn+\overline{t}+m)}{2m} + \frac{(\lambda + \mu (rn+\overline{t}))^2}{2}\\&\quad = \bigg (\frac{\mu ^2n^2}{2}+\frac{n^2}{2m}\bigg )r^2 + \bigg (n\big (\mu ^2+\frac{1}{m}\big )\overline{t}+\frac{2ns+mn}{2m}+\lambda \mu n\bigg )r + \text{ const }. \end{aligned}$$

Since \(\mu ^2+\frac{1}{m} = \frac{1}{n}\) is always positive, the conformal weights \(\{h_{s+t, \overline{a+t}, \lambda +\mu t}|t \in \mathbb {Z}\}\) always have a lower bound. The minimal values attain when r is an integer that is closest to

$$\begin{aligned} -\frac{\overline{t}}{n} - \frac{s}{m} - \frac{1}{2} - \lambda \mu = -z-\frac{\overline{t}+a}{n} - \frac{1}{2}. \end{aligned}$$

We list the minimal values for all \(\overline{t}\) as follows:

  • If \(\overline{t} + a = 0\), i.e., \(a = 0, \overline{t} = 0\), then \(r = -z\) or \(-z-1\).

  • If \(1 \le \overline{t} + a \le n-1\), then \(r = -z-1\).

  • If \(\overline{t} + a = n\), then \(r = -z-1\) or \(-z-2\).

  • If \(\overline{t} + a \ge n+1\), then \(r = -z-2\).

The minimum are all the same (independent of \(\overline{t}\)):

$$\begin{aligned} \frac{n}{2}(z+1)^2 - n\left( \frac{a}{n}+\frac{1}{2}+z\right) (z+1) + \frac{a(n-a)}{2n} + \frac{s(s+m)}{2m} + \frac{\lambda ^2}{2} \end{aligned}$$
(7.4)

It is easy to see (7.4) attains when \(-zn-a+s\) is nonnegative, i.e. \(\mu ^2 s -\lambda \mu \ge 0\).

Case 2 If \(s+t < 0\),

$$\begin{aligned}&h_{s+t,\overline{a+t}, \lambda +\mu t} \\&\quad = \frac{(\overline{a+t})(n-\overline{a+t})}{2n} + \frac{(s+t)(s+t-m)}{2m} + \frac{(\lambda + \mu t)^2}{2}\\&\quad = \bigg (\frac{\mu ^2n^2}{2}+\frac{n^2}{2m}\bigg )r^2 + \bigg (n\big (\mu ^2+\frac{1}{m}\big )\overline{t}+\frac{2ns-mn}{2m}+\lambda \mu n\bigg )r + \text{ const }. \end{aligned}$$

The minimal values attain when r is an integer that is closest to

$$\begin{aligned} -\frac{\overline{t}}{n} - \frac{s}{m} + \frac{1}{2} - \lambda \mu = -z-\frac{\overline{t}+a}{n} + \frac{1}{2}. \end{aligned}$$

We list the minimal values for all \(\overline{t}\) as follows:

  • If \(\overline{t} + a = 0\), i.e., \(a = 0, \overline{t} = 0\), then \(r = -z\) or \(-z+1\).

  • If \(1 \le \overline{t} + a \le n-1\), then \(r = -z\).

  • If \(\overline{t} + a = n\), then \(r = -z-1\) or \(-z\).

  • If \(\overline{t} + a \ge n+1\), then \(r = -z-1\).

The minimum are all the same (independent of \(\overline{t}\)):

$$\begin{aligned} \frac{n}{2}z^2 - zn\left( \frac{a}{n}-\frac{1}{2}+z\right) + \frac{a(n-a)}{2n} + \frac{s(s-m)}{2m} + \frac{\lambda ^2}{2}. \end{aligned}$$
(7.5)

Similar to the previous case, (7.5) attains when \(-zn-a+s\) is nonpositive.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Creutzig, T., Yang, J. Tensor categories of affine Lie algebras beyond admissible levels. Math. Ann. 380, 1991–2040 (2021). https://doi.org/10.1007/s00208-021-02159-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-021-02159-w

Navigation